Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

A Light Scattering and Holographic Technique for Determining Droplet Size and Volume Density Distribution in Diesel Fuel Sprays

1982-02-01
820355
In a diesel engine, the mixing of the fuel spray and in-cylinder air controls rate of beat release during combustion, namely it will determine the thermal efficiency, maximum output and gas or noise emission, etc. Therefore, it is important to measure the droplet size and its volume density distribution in diesel fuel sprays. The optical measuring method, which includes a light scattering and holographic technique, seems the only feasible method for analysing these unsteady characteristics of fuel sprays. The light scattering technique described herein was based upon Mie scattering theory, and the droplet size and volume density distribution of fuel sprays were calculated from the combination of the light extinction and the forward-to-backscattering ratio of Mie scattering intensity. The volume density and droplet size distribution of fuel sprays were obtained from the light intensity distribution on a photograph of fuel sprays.
Journal Article

An Investigation of High Load (Compression Ignition) Operation of the “Naphtha Engine” - a Combustion Strategy for Low Well-to-Wheel CO2 Emissions

2008-06-23
2008-01-1599
A computational and experimental study has been carried out to assess the high load efficiency and emissions potential of a combustion system designed to operate on low octane gasoline (or naphtha). The “naphtha engine” concept utilizes spark ignition at low load, HCCI at intermediate load, and compression ignition at high load; this paper focuses on high load (compression ignition) operation. Experiments were carried out in a single cylinder diesel engine with compression ratio of 16 and a common rail injector/fuel delivery system. Three fuels were examined: a light naphtha (RON∼59, CN∼34), heavy naphtha (RON∼66, CN∼31), and heavy naphtha additized with cetane improver (CN∼40). With single fuel injection near top dead center (TDC) (diesel-like combustion), excessive combustion noise is generated as the load increases. This noise limits the maximum power, in agreement with the CFD predictions. The noise-limited maximum power increases somewhat with the use of single pilot injection.
Technical Paper

Biodiesel Stability and its Effects on Diesel Fuel Injection Equipment

2012-04-16
2012-01-0860
The effects of biodiesel oxidation stability on diesel fuel injection equipment (FIE) behavior were investigated using newly developed test rig and methodology. On the test rig, biodiesel blend fuels were circulated through a fuel tank and a common rail injection system. Fuel injected from typical diesel injectors was returned into the fuel tank to enhance the speed of fuel degradation. The results showed that injector deposits could be reproduced on a test rig. It was observed that injector body temperature increase accelerates the degradation of fuel and therefore gives earlier FIE failure. Fuel renewal could partially restore the injection quantity after complete failure at low injection pressure, thus showing a potential cleaning effect on injector deposits when refueling a car.
Technical Paper

Colorimetric Sensor for Facile Identification of Methanol-Containing Gasoline

2017-03-28
2017-01-1288
Despite the fact that methanol is toxic to human health and causes serious damage to automobile engines and fuel system components, methanol-containing gasoline is becoming popular in some areas. Methanol demonstrates similar chemical properties to ethanol (which is already established as an additive to gasoline), so that it is difficult to identify methanol-containing gasoline without performing proper chemical analysis. In this study, we report a low-cost, portable, and easy-to-operate sensor that selectively changes color in response to methanol contained in gasoline. The colorimetric sensor will be useful for automobile users to avoid methanol-containing gasoline upon refueling.
Journal Article

Combustion Improvement of Diesel Engine by Alcohol Addition - Investigation of Port Injection Method and Blended Fuel Method

2011-04-12
2011-01-0336
Alcohol fuels that can be produced from cellulose continue to become more widely used in gasoline engines. This research investigated the application of alcohol to diesel engines with the aims of improving the combustion of diesel engines and of utilizing alternative fuels. Two methods were compared, a method in which alcohol is injected into the air intake system and a method in which alcohol is blended in advance into the diesel fuel. Alcohol is an oxygenated fuel and so the amount of soot that is emitted is small. Furthermore, blended fuels have characteristics that help promote mixture formation, which can be expected to reduce the amount of soot even more, such as a low cetane number, low viscosity, low surface tension, and a low boiling point. Ethanol has a strong moisture-absorption attribute and separates easily when mixed with diesel fuel. Therefore, 1-butanol was used since it possesses a strong hydrophobic attribute and does not separate easily.
Journal Article

Development Progress of the Toyota Fuel Cell Hybrid Vehicle

2008-04-14
2008-01-0420
Since 1992, Toyota Motor Corporation (TMC) has been working on the development of fuel cell system technology. TMC is designing principal components in-house, including fuel cell stacks, high-pressure hydrogen storage tank systems, and hybrid systems. TMC developed the '02 model TOYOTA FCHV, the world-first market-ready fuel cell vehicle, and started limited lease of the vehicles in 2002. In 2005, TMC developed a new model of TOYOTA FCHV which obtained vehicle type certification in Japan, and is currently available for leasing. TMC has improved the cruising range and cold start/drive capability of the TOYOTA FCHV, and conducted public road tests to evaluate the performance. The improved TOYOTA FCHV successfully traveled from Osaka to Tokyo (approximately 560km, 350 miles) on a single fueling of hydrogen. In addition, the cold weather tests carried out in Hokkaido and North America have verified its starting/driving capability at subfreezing temperatures including -37°C.
Journal Article

Development of Air Supply Controller for FCV Based on Model-Based Development Approach

2021-04-06
2021-01-0742
In Toyota’s 2nd generation FCV, an electric turbo-type air compressor has been adopted for downsizing and cost reduction. Automotive Fuel Cell applications present several challenges for implementing a turbo-type air compressor. When operating a fuel cell in high-temperature or high-altitude locations, the FC stack must be pressurized to prevent dry-up. The flow rate vs pressure conditions that the FC must pass through or in some cases operate at are typically within the surge region of a turbo-type air compressor. Additionally, Toyota requires quick air transient response (< 1 sec) for power generation, energy management, and FC dry-up prevention. If the turbo-type air compressor is not precisely controlled during quick transients, it can easily enter the surge region.
Technical Paper

Development of Closed-Loop Robust Control System for Diesel Engines - Combustion Monitoring by Crank Angular Velocity Analysis and its Applications -

2012-04-16
2012-01-1157
Closed-loop robust control system that can monitor combustion state and control it into optimal state using crank angular velocity analysis was established. The system can be constructed without any change of the current hardware. It can avoid engine stall, deterioration of drivability and white smoke emission by misfire after filling low cetane fuels. This study was attempted to grasp the frequency characteristics of crank angular velocity both normal combustion and misfire with FFT (Fast Fourier Transform) and Wavelet Transform. FFT used for frequency analysis is generic method to acquire the frequency characteristics of steady oscillation, however is unsuitable for acquiring the frequency characteristics of transient oscillation. Therefore authors adopted Wavelet Transform and succeeded in grasping the phenomenon in misfiring in time sequential.
Journal Article

Development of Compact and High-Performance Fuel Cell Stack

2015-04-14
2015-01-1175
Toyota Motor Corporation (TMC) has been developing fuel cell (FC) technology since 1992, and finally “MIRAI” was launched in 15th Dec. 2014. An important step was achieved with the release of the “FCHV-adv” in 2008. It established major improvements in efficiency, driving range, durability, and cold start capability. However, enhancing performance and further reductions in size and cost are required to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs). TMC met these challenges by developing the world's first FC stack without a humidifying system. This was achieved by the development of an innovative cell flow field structure and membrane electrode assembly (MEA), enabling a compact and high-performance FC stack. Other cost reduction measures incorporated by the FC stack include reducing the amount of platinum in the catalyst by two-thirds and adopting a carbon nano-coating for the separator surface treatment.
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
Journal Article

Development of Electric Power Control using the Capacitance Characteristics of the Fuel Cell

2011-04-12
2011-01-1346
Cold weather operation has been a major issue for fuel cell vehicles (FCV). In order to counteract this effect on FCV operation, an approach for rapid warm-up operation based on : concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply, was adopted in a running fuel cell hybrid vehicle. In order to adjust the output power response of the fuel cell to the target power of the vehicle, -the inherent capacitance characteristics of the fuel cell were measured- based on the oxidation-reduction reaction and an electric double-layer capacitor, and an equivalent electric circuit model of a fuel cell with the capacitance was constructed. This equivalent electric circuit model was used to develop a power control algorithm to manage absorption of the surplus power, or deviation, to the capacitance.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Toyota -Durability-

2009-04-20
2009-01-1002
Various issues must be resolved before sustainable mobility can be achieved, the most important of which are reacting to energy supply and demand, and lowering CO2 emissions. At present, the fact that the vast majority of vehicles run on conventional oil is regarded as a problem for which Toyota Motor Corporation (TMC) is developing various technological solutions. Fuel cell (FC) technology is one of the most promising of these solutions. A fuel cell is an extremely clean device that uses hydrogen and oxygen to generate power without emitting substances like CO2, NOx, or PM during operation. Its energy efficiency is high and it is widely expected to form the basis of the next generation of powertrains. Since 1992, TMC has been working to develop the main components of fuel cell vehicles, including the fuel cell itself, and the high pressure hydrogen tank and hybrid systems.
Technical Paper

Development of Fuel Cell Stack for New FCV

2016-04-05
2016-01-0529
The fuel cell (FC) stack that was developed for a new FCV achieves a power density of 3.1 kW/L (one of the highest in the world) by the use of an innovative cell flow field structure, electrodes, and a simplified stack tightening structure. These innovations allow the FC stack to be installed under the floor of a sedan-type fuel cell vehicle (FCV). Underfloor installation also required excellent impact resistance, waterproofing, and rustproofing performance. These items were quantified and analyzed during the development of the FC stack, resulting in an optimized structure capable of enduring a wide range of possible underfloor inputs.
Technical Paper

Development of Fuel-Cell Hybrid Bus

2003-03-03
2003-01-0417
In order to improve air quality and to reduce urban noise, Toyota Motor Corporation has developed a fuel cell hybrid bus, FCHV-BUS2, in cooperation with HINO Motors, Ltd. The FCHV-BUS2 is based on a HINO low floor city bus model, and powered by a hydrogen fuel cell hybrid system. Hydrogen is stored in high pressure tanks on the bus roof. Based on the Toyota fuel cell hybrid technology for passenger cars, this fuel cell hybrid bus is equipped with two fuel cell stacks, two traction motors and four secondary batteries, making its vehicle efficiency approximately 1.7 times better than the diesel engine powered bus. The vehicle efficiency is boosted by charging the secondary batteries with regenerated energy while deceleration and by stopping the fuel cell stack(s) power generation during low fuel cell power modes.
Technical Paper

Development of Instantaneous Temperature Measurement Technique for Combustion Chamber Surface and Verification of Temperature Swing Concept

2016-04-05
2016-01-0675
To improve the thermal efficiency of an internal combustion engine, the application of ceramics to heat loss reduction in the cylinders has been studied [1-2]. The approach taken has focused on the low heat conductivity and high heat resistance of the ceramic. However, since the heat capacity of the ceramic is so large, there is a problem in that the wall temperature increases during the combustion cycle. This leads to a decrease in the charging efficiency, as well as knocking in gasoline engines. To overcome these problems, the application of thermal insulation without raising the gas temperature during the intake stroke has been proposed [3-4]. As a means of achieving this, we developed a "temperature swing heat insulation coating" [5, 6, 7, 8, 9]. This reduces the heat flux from the combustion chamber into the cooling water by making the wall temperature follow the gas temperature as much as possible during the expansion and exhaust strokes.
Technical Paper

Development of New Diesel Particulate Active Reduction System for both NOx and PM Reduction

2011-04-12
2011-01-1277
The new Diesel Particulate active Reduction (DPR) system was developed for a medium-duty commercial vehicle as a deNOx catalyst combined with the conventional DPR system to achieve the Japan Post New-Long-Term (JPNLT) emissions regulations. It consists of a catalyst converter named as the new DPR cleaner, a fuel dosing injector, NOx sensors, temperatures and pressure sensors. The new DPR cleaner was constructed from a Front Diesel Oxidation Catalyst (F-DOC), a catalyzed particulate Filter (Filter), and a Rear Diesel Oxidation Catalyst (R-DOC). A newly developed Hydrocarbon Selective Catalyst Reduction (HC-SCR) catalyst was employed for each catalyst aiming to reduce NOx emissions with diesel fuel supplied from the fuel dosing injector. While the total volume of the catalyst was increased, the compact and easy-to-install catalyst converter was realized through the optimization of the flow vector and flow distribution in it by means of Computational Fluid Dynamics (CFD) analysis.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Journal Article

Development of System Control for Rapid Warm-up Operation of Fuel Cell

2012-04-16
2012-01-1230
Cold weather operation has been a major issue for fuel cell hybrid vehicles (FCHV). To counteract the effects of low temperatures on FCHV operation, an approach for rapid warm-up operation based on concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply was adopted. In order to suppress increases in exhaust hydrogen concentration due to pumping hydrogen during rapid warm-up, dilution control using bypass air and reduction of concentration overvoltage by a minimum voltage guard were implemented. These approaches effectively control waste heat generation and suppress exhaust hydrogen concentrations during cold start and warm-up. These developments were incorporated into the 2008 Toyota FCHV-adv and it was confirmed that the rapid warm-up operation strategy allowed the FCHV-adv to be successfully and repeatedly started at -30°C.
X