Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

An Adaptive Engine Control Algorithm for Acceleration Response

1991-02-01
910256
Chassis back and forth oscillation caused by sudden engine torque increase tends to occur, according to the characteristic of vehicle dynamics. This oscillation is called an acceleration surge and gives a vehicle driver a feeling of discomfort. This paper provides two control methods which can change the characteristic of vehicle acceleration response in order to suppress acceleration surge and to macth with driver's preference. The first control method is an acceleration servo method which is composed of control reference model and ignition timing control. The second control method is a variable response characteristic control algorithm. We treat the controlled object as the second order model with time delay, and assign the characteristic roots of transfer function in order to obtain the desired response.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

CPU Model-based Hardware/Software Co-design for Real-Time Embedded Control Systems

2007-04-16
2007-01-0776
This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on.
Technical Paper

Development of High Pressure Fuel Pump by using Hydraulic Simulator

2005-04-11
2005-01-0099
We developed a high-pressure fuel pump for a direct injection gasoline engine and used a hydraulic simulator to design it. A single plunger design is the major trend for high-pressure fuel pumps because of its simple structure and small size. However, the single plunger causes large pressure pulsation and an unstable flow rate, especially at high engine speed. Therefore, a fuel-pipe layout that inhibits the pressure pulsation and a flow-rate control that stabilizes the flow are the most important challenges in pump design. Our newly developed hydraulic simulator can evaluate the dynamic characteristics of a total fuel supply system, which consists of pump, pipe, injector, and control logic. Using this simulator, we have improved fuel flow by optimizing the outlet check valve lift and the cam profile, and we reduced pressure pulsation by optimizing the layout of fuel pipes. Our simulation results agreed well with our experimental results.
Technical Paper

Development of High-resolution Exciting Source Identification System

2016-04-05
2016-01-1325
We have developed an excitation source identification system that can distinguish excitation sources on a sub-assembly level (around 30mm) for vehicle components by combining a measurement and a timing analysis. Therefore, noise and vibration problems can be solved at an early stage of development and the development period can be shortened. This system is composed of measurement, control, modeling, and excitation source identification parts. The measurement and the excitation source identification parts are the main topics of this paper. In the measurement part, multiple physical quantities can be measured in multi-channel (noise and vibration: 48ch, general purpose: 64ch), and these time data can be analyzed by using a high-resolution signal analysis (Instantaneous Frequency Analysis (IFA)) that we developed.
Technical Paper

Development of Predictive Powertrain State Switching Control for Eco-Saving ACC

2017-03-28
2017-01-0024
In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
Technical Paper

Development of Smooth Shift Control System with Output Torque Estimation

1995-02-01
950900
Most automatic transmissions are controlled in compliance with a predetermined program. Transient control during gear shift is also carried out according to a predetermined process. In this method a lot of labor is required to tune data tables. So we developed a tuning free system by feedback control using torque estimation technology and the experimental result is reported. Torque fluctuation during shift is detected and fed back to compare the torque reference, which is generated from the estimated torque itself. The engine torque is decreased by means of retarding the ignition spark advance, according to the comparison deviation. As a consequence of the feedback, the transient torque control is carried out without any tuning trouble, and better than usual torque fluctuation is obtained.
Technical Paper

Development of a Highly Accurate Air-Fuel Ratio Control Method Based on Internal State Estimation

1992-02-01
920290
A fuel injection control method is developed in which the transient air-fuel ratio is accurately controlled by an internal state estimation method with dynamic characteristics. With conventional methods the air-fuel ratio control precision is limited, because the air measurement system, the air and the fuel dynamic characteristics lack precision. In this development, the factors disturbing the air-fuel ratio under transient conditions are determined by analysis of the control mechanisms. The disturbance factors are found to be (1) the hot wire sensor has a delay time, (2) manifold air charging causes an overshoot phenomenon, (3) there is a dead time between sensing and fuel flow into the cylinder and (4) there is a delay of fuel flow into the cylinder caused by the fuel film. Compensation schemes are constructed for each of these technical problems.
Journal Article

Development of a New Metal Substrate for Lean NOx Trap

2008-04-14
2008-01-0806
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Technical Paper

Engine Control System for Lean Combustion

1987-02-01
870291
The basic structure of a new engine control system for lean combustion is presented. A fuel atomizer is adopted to obtain a uniform mixture of fine fuel droplets, 40µm in diameter. A new air-fuel ratio sensor and an integrated control method for air flow are developed for precise and rapid response control of cylinder air-fuel ratios 8 to 26. Great improvements in both fuel consumption and exhaust emission characteristics are obtained by increasing the mean air-fuel ratio to 25 under cruising condition. There are made possible by the stable combustion provided by the fine mixture. This system provides the driver with quick vehicle response and good fuel economy, while ensuring smooth driveability.
Technical Paper

Estimation of Particulate Matter in Direct Injection Gasoline Engines by Non-Combustion CFD

2014-04-01
2014-01-1142
A technique of estimating particulate matter (PM) from gasoline direct injection engines is proposed that is used to compute mass density and particle number density of PM by using fuel mass in rich mixtures obtained by using non-combustion computational fluid dynamics (CFD). The CFD code that was developed by the authors employed a Cartesian coordinates system as a discretization method and large eddy simulation (LES) as a turbulence model. Fuel spray droplets were treated with the discrete droplet model (DDM). The code was verified with some experimental data such as those obtained from in-cylinder gas-flows with a laser Doppler velocimeter (LDV) and in-cylinder fuel concentration with laser induced fluorescence (LIF). PM emissions from a single-cylinder gasoline direct injection engine were measured with an electrical low pressure impactor (ELPI) to determine the model constants that were required in the estimation model.
Technical Paper

Friction Stir Welding of Aluminum for Automotive Closure Panel Applications

2008-04-14
2008-01-0145
Friction stir welding (FSW) shows advantages for joining lightweight alloys for automotive applications. In this research, the feasibility of friction stir welding aluminum for an automotive component application was studied. The objective of this research was to improve the Friction Stir Spot Welding (FSSW) technique used to weld an aluminum closure panel (CP). The spot welds were made using the newly designed swing-FSSW technique. In a previous study (unpublished), the panel was welded from the thin to thick side using both an 8 mm and a 10 mm diameter tool. The 10 mm tool passed various fatigue tests; however, the target was to improve performance of the 8 mm tool, especially to increase the number of cycle before the first crack appearance during fatigue testing. In this study fatigue tests and static strength was recorded for weld specimens that were welded from thick-to-thin with an 8 mm diameter tool.
Technical Paper

Friction Stir Welding of Dissimilar Magnesium Alloys for Automotive Applications

2007-04-16
2007-01-1026
In this research, the feasibility of FSW dissimilar magnesium alloys was investigated. Specifically, die cast MRI-153M and wrought AZ31 were butt-welded. The effects of weld parameters such as tool rotation and weld speed on the weld quality have been characterized in terms of macrostructure, microstructure, hardness profile as well as tensile strength. A relatively wide FSW process window exists to achieve void-free welds. In the stir zone MRI-153M transforms from cast structure to fine grain structure during FSW, while AZ31 transforms from originally twinned grains to equi-axed grains without twins. MRI-153M in the stir zone becomes stronger than the base metal and the stir zone on the AZ31 side becomes weaker than the base metal. Tensile coupons failed in the base metal of MRI-153M, and the tensile strength was found to depend on the quality of the base metal of MRI-153M.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
Technical Paper

Investigation of High Fuel Pressure and Multiple Injection to Reduce Engine Emission during Catalyst Light-Off

2023-04-11
2023-01-0244
The demand for clean energy efficient transportation is rapidly increasing to meet greenhouse gas emissions reduction and promote sustainability. Gasoline direct injection engines (GDI) have high thermal efficiency thus low greenhouse gas emissions compared with conventional port fueled engines. However, during cold start conditions GDI engines produce harmful emissions, including nitrogen oxides, hydrocarbons, and particulate matter. Thus, high pressure fuel system development for direct injection of gasoline is being conducted to reduce emissions during engine cold start. This paper summarized the effect of high fuel pressure and multiple injections on cold catalyst light-off strategy for rapid heating of the catalyst. Experiments were carried out using light-duty four-cylinder engine at cold catalyst light-off conditions with coolant temperature at 30 °C.
Technical Paper

Mineral Recovery Systems for Humans in a CELSS

1992-07-01
921237
The recovery of important minerals, salt (NaCI) and potassium (K), in a closed system, namely CELSS is discussed. NaCI is needed for humans, but is potentially harmful to plants. Salt is recovered after wet oxidation of urine. Since Na and K have similar chemical and physical properties, their recovery or separation may require sophisticated methods. Na, CI and K ions are separated from other ions by electrodialysis with univalent selective ion-exchange membranes and then NaCI is obtained separately by a crystalization process. Preliminary experiment on crystalization of NaCI-KCl mixed solutions showed a good separation result.
Journal Article

Multi-Fidelity Total Integrated Simulation Technology for High Pressure Pump with Squeeze Film Effect

2017-03-28
2017-01-1325
Automotive fuel can be efficiently combusted by injecting it into the cylinders at high pressure to atomize it to pass the regulations for exhaust gas and fuel economy. For this reason, automotive companies have developed direct injection engines, which can inject gasoline into the cylinders directly. Furthermore, the demand for lower-noise high pressure pumps is also increasing from the viewpoint of automotive comfort. Since the valve velocity and noise level will increase as the pressure in fuel pumps increases, noise problems need to be solved under the high pressure conditions. Accordingly, the valve motion should be predicted with high accuracy under operating conditions to evaluate the noise caused by valve impingement. In addition, the squeeze film effect phenomenon will occur in the physical fuel pumps affect the prediction of the noise level caused by valve impingement.
Technical Paper

Multi-Swirl Type Injector for Port Fuel Injection Gasoline Engines

2014-04-01
2014-01-1436
The authors developed a multi-swirl type injector characterized by a short spray penetration length and fine atomization to improve exhaust emissions and fuel consumption for port fuel injection (PFI) gasoline engines. In PFI gasoline engines, fuel adhesion to an intake manifold causes exhaust emission. In addition, good mixing of fuel and air causes high combustion efficiency, and as a result the fuel consumption improves. Injectors therefore require two improvements: first, a short spray penetration to avoid fuel adhesion to the intake manifold, and second, a fine atomization spray to generate a good mixture formation of fuel and air. In this study, the authors developed a multi-swirl type injector equipped with multiple orifice holes featuring swirl chambers upstream of each orifice. The key feature of the proposed injector is “involute curve-formed swirl chambers” for generating a uniform thin liquid-film in the orifices.
Technical Paper

Numerical Simulation System for Analyzing Fuel Film Flow in Gasoline Engine

1993-03-01
930326
A new numerical simulation system has been developed which predicts flow behavior of fuel film formed on intake port and combustion chamber walls of gasoline engines. The system consists of a film flow model employing film thickness as a dependent variable, an air flow model, and a fuel spray model. The system can analyze fuel film flow formed on any arbitrary three-dimensional configuration. Fuel film flow formed under a condition of continuous intermittent fuel injection and steady-state air flow was calculated, and comparison with experimental data showed the system possessing ability of qualitative prediction.
X