Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

A Virtual ECU and Its Application to Control System Analysis - Power Window System Demonstration

2016-04-05
2016-01-0022
A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
Technical Paper

Air-Fuel Ratio Sensor Utilizing Ion Transportation in Zirconia Electrolyte

1991-02-01
910501
To detect an air-fuel ratio in wide range is very important to control the automotive engines with low fuel consumption and low exhaust emissions. Although the application of zirconia electrolyte for this purpose has been proposed by the authors several years ago, there remained several problems due to the contamination of gas diffusion apertures which are exposed to the exhaust gas environment. Here the behavior of ions transported in zirconia electrolyte have been analyzed to optimize the structure and characteristics, and to guarantee the long life operation of sensor. Gas contents and their reactions in combustion process under the wide range air-fuel ratio have been analyzed, and these results were reflected to the analysis of ion transportation in zirconia electrolyte. Experimental results supported the analytical results, and they showed the possibilities of long life operation of zirconia air-fuel ratio sensor utilizing ion transportation phenomena.
Technical Paper

An Adaptive Engine Control Algorithm for Acceleration Response

1991-02-01
910256
Chassis back and forth oscillation caused by sudden engine torque increase tends to occur, according to the characteristic of vehicle dynamics. This oscillation is called an acceleration surge and gives a vehicle driver a feeling of discomfort. This paper provides two control methods which can change the characteristic of vehicle acceleration response in order to suppress acceleration surge and to macth with driver's preference. The first control method is an acceleration servo method which is composed of control reference model and ignition timing control. The second control method is a variable response characteristic control algorithm. We treat the controlled object as the second order model with time delay, and assign the characteristic roots of transfer function in order to obtain the desired response.
Technical Paper

An Automatic Parameter Matching for Engine Fuel Injection Control

1992-02-01
920239
An automatic matching method for engine control parameters is described which can aid efficient development of new engine control systems. In a spark-ignition engine, fuel is fed to a cylinder in proportion to the air mass induced in the cylinder. Air flow meter characteristics and fuel injector characteristics govern fuel control. The control parameters in the electronic controller should be tuned to the physical characteristics of the air flow meter and the fuel injectors during driving. Conventional development of the engine control system requires a lot of experiments for control parameter matching. The new matching method utilizes the deviation of feedback coefficients for stoichiometric combustion. The feedback coefficient reflects errors in control parameters of the air flow meter and fuel injectors. The relationship between the feedback coefficients and control parameters has been derived to provide a way to tune control parameters to their physical characteristics.
Technical Paper

CPU Model-based Hardware/Software Co-design for Real-Time Embedded Control Systems

2007-04-16
2007-01-0776
This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

Development of High Pressure Fuel Pump by using Hydraulic Simulator

2005-04-11
2005-01-0099
We developed a high-pressure fuel pump for a direct injection gasoline engine and used a hydraulic simulator to design it. A single plunger design is the major trend for high-pressure fuel pumps because of its simple structure and small size. However, the single plunger causes large pressure pulsation and an unstable flow rate, especially at high engine speed. Therefore, a fuel-pipe layout that inhibits the pressure pulsation and a flow-rate control that stabilizes the flow are the most important challenges in pump design. Our newly developed hydraulic simulator can evaluate the dynamic characteristics of a total fuel supply system, which consists of pump, pipe, injector, and control logic. Using this simulator, we have improved fuel flow by optimizing the outlet check valve lift and the cam profile, and we reduced pressure pulsation by optimizing the layout of fuel pipes. Our simulation results agreed well with our experimental results.
Technical Paper

Development of High-resolution Exciting Source Identification System

2016-04-05
2016-01-1325
We have developed an excitation source identification system that can distinguish excitation sources on a sub-assembly level (around 30mm) for vehicle components by combining a measurement and a timing analysis. Therefore, noise and vibration problems can be solved at an early stage of development and the development period can be shortened. This system is composed of measurement, control, modeling, and excitation source identification parts. The measurement and the excitation source identification parts are the main topics of this paper. In the measurement part, multiple physical quantities can be measured in multi-channel (noise and vibration: 48ch, general purpose: 64ch), and these time data can be analyzed by using a high-resolution signal analysis (Instantaneous Frequency Analysis (IFA)) that we developed.
Technical Paper

Development of Predictive Powertrain State Switching Control for Eco-Saving ACC

2017-03-28
2017-01-0024
In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
Technical Paper

Development of a Highly Accurate Air-Fuel Ratio Control Method Based on Internal State Estimation

1992-02-01
920290
A fuel injection control method is developed in which the transient air-fuel ratio is accurately controlled by an internal state estimation method with dynamic characteristics. With conventional methods the air-fuel ratio control precision is limited, because the air measurement system, the air and the fuel dynamic characteristics lack precision. In this development, the factors disturbing the air-fuel ratio under transient conditions are determined by analysis of the control mechanisms. The disturbance factors are found to be (1) the hot wire sensor has a delay time, (2) manifold air charging causes an overshoot phenomenon, (3) there is a dead time between sensing and fuel flow into the cylinder and (4) there is a delay of fuel flow into the cylinder caused by the fuel film. Compensation schemes are constructed for each of these technical problems.
Journal Article

Development of a New Metal Substrate for Lean NOx Trap

2008-04-14
2008-01-0806
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Technical Paper

Effects of Small Disturbances Caused by Changes of Surrounding Conditions on the Small Positive Pressure Control System of the CEEF

1999-07-12
1999-01-1985
The closed ecology experiment facility (CEEF) has a small positive pressure control system consisting of rubber buffers and a mechanical subsystem. In the present study, effects of small temperature disturbances caused by changes of surrounding conditions on the pressure control system are investigated experimentally and in numerical simulations. Though solar radiation causes a pressure disturbance in the facility, choosing the proper diameter of ducts which connect the rubber buffers to the modules, the rubber buffers can follow fluctuations of low frequency, like daily atmospheric fluctuations and pressure changes caused by temperature control of the facility’s air conditioners, and can cut off those of high frequency due to changes of environmental conditions.
Technical Paper

Engine Control System for Lean Combustion

1987-02-01
870291
The basic structure of a new engine control system for lean combustion is presented. A fuel atomizer is adopted to obtain a uniform mixture of fine fuel droplets, 40µm in diameter. A new air-fuel ratio sensor and an integrated control method for air flow are developed for precise and rapid response control of cylinder air-fuel ratios 8 to 26. Great improvements in both fuel consumption and exhaust emission characteristics are obtained by increasing the mean air-fuel ratio to 25 under cruising condition. There are made possible by the stable combustion provided by the fine mixture. This system provides the driver with quick vehicle response and good fuel economy, while ensuring smooth driveability.
Technical Paper

Estimation of Particulate Matter in Direct Injection Gasoline Engines by Non-Combustion CFD

2014-04-01
2014-01-1142
A technique of estimating particulate matter (PM) from gasoline direct injection engines is proposed that is used to compute mass density and particle number density of PM by using fuel mass in rich mixtures obtained by using non-combustion computational fluid dynamics (CFD). The CFD code that was developed by the authors employed a Cartesian coordinates system as a discretization method and large eddy simulation (LES) as a turbulence model. Fuel spray droplets were treated with the discrete droplet model (DDM). The code was verified with some experimental data such as those obtained from in-cylinder gas-flows with a laser Doppler velocimeter (LDV) and in-cylinder fuel concentration with laser induced fluorescence (LIF). PM emissions from a single-cylinder gasoline direct injection engine were measured with an electrical low pressure impactor (ELPI) to determine the model constants that were required in the estimation model.
Technical Paper

Friction Stir Welding of Aluminum for Automotive Closure Panel Applications

2008-04-14
2008-01-0145
Friction stir welding (FSW) shows advantages for joining lightweight alloys for automotive applications. In this research, the feasibility of friction stir welding aluminum for an automotive component application was studied. The objective of this research was to improve the Friction Stir Spot Welding (FSSW) technique used to weld an aluminum closure panel (CP). The spot welds were made using the newly designed swing-FSSW technique. In a previous study (unpublished), the panel was welded from the thin to thick side using both an 8 mm and a 10 mm diameter tool. The 10 mm tool passed various fatigue tests; however, the target was to improve performance of the 8 mm tool, especially to increase the number of cycle before the first crack appearance during fatigue testing. In this study fatigue tests and static strength was recorded for weld specimens that were welded from thick-to-thin with an 8 mm diameter tool.
Technical Paper

Friction Stir Welding of Dissimilar Magnesium Alloys for Automotive Applications

2007-04-16
2007-01-1026
In this research, the feasibility of FSW dissimilar magnesium alloys was investigated. Specifically, die cast MRI-153M and wrought AZ31 were butt-welded. The effects of weld parameters such as tool rotation and weld speed on the weld quality have been characterized in terms of macrostructure, microstructure, hardness profile as well as tensile strength. A relatively wide FSW process window exists to achieve void-free welds. In the stir zone MRI-153M transforms from cast structure to fine grain structure during FSW, while AZ31 transforms from originally twinned grains to equi-axed grains without twins. MRI-153M in the stir zone becomes stronger than the base metal and the stir zone on the AZ31 side becomes weaker than the base metal. Tensile coupons failed in the base metal of MRI-153M, and the tensile strength was found to depend on the quality of the base metal of MRI-153M.
Technical Paper

Highly Heat-Resistant Plastic Optical Fibers

1991-02-01
910875
Plastic optical fiber has been widely used in the field of short distance optical transmission. However heat resistance of commercial plastic fiber is so low that its applications are limited. Then, a plastic fiber of thermosetting acrylate resin core has been developed. This fiber shows 80%/m retention of light transmittance at 1m after 1,000 hours at 150°C. It resists heat deformation and withstands up to 200 °C for a short time period. Tests show this fiber has desirable mechanical characteristics, along with good environmental resistance. In addition, a fiber which has a silicon resin as a core material was developed which has even better heat resistance.
Technical Paper

Improvement of Thermal Efficiency Using Fuel Reforming in SI Engine

2010-04-12
2010-01-0584
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine.
Journal Article

Injection Quantity Range Enhancement by Using Current Waveform Control Technique for DI Gasoline Injector

2014-04-01
2014-01-1211
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics.
X