Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Active Vibration Control of Motor Driven Power Steering in Electric Vehicle

2023-05-08
2023-01-1043
This study presents a novel active vibration control (AVC) system on motor driven power steering (MDPS) to reduce interior noise reduction caused by operating the MDPS in an electric vehicle. MDPS is electronic power steering (EPS). The MDPS attached to the rack gear of power steering system is called R-MDPS. Operating of the R-MDPS generates a structural vibration of R-MDPS, and the vibration is transmitted to car body through mounts of car subframe. The vibrating body of car becomes a monopole and dipole sources of vibroacoustic noise generated inside car. This vibracoustic noise is a structure borne noise and makes passenger annoyance. To reduce interior noise inside a car directly, active noise control (ANC) has been used as active method and is a useful method for active cancellation of the low frequency noises less than 400Hz.
Technical Paper

Active Vibration Control of Road Noise Path Using Piezoelectric Stack Actuators and Filtered-X LMS Algorithm for Electric Vehicle Applications

2024-06-12
2024-01-2953
This paper presents the novel active vibration control (AVC) system that controls vehicle body vibration to reduce the structural borne road noise. As a result of vehicle noise testing in an electric vehicle, the predominant frequency of vehicle body vibration that worsens interior noise is in the range of 150-250Hz. Such vibration in that frequency range, commonly masked in engine vibrations, are hard to neglect for electric vehicles. The vibration source of that frequency is the resonance of tire cavity mode. Resonator or absorption material has been applied inside the tire for the control of cavity noise as a passive method. They require an increment of weight and cost. Therefore, a novel method is necessary. The vibration amplified by resonance of cavity mode is transferred to the vehicle body throughout the suspension system. To reduce the vibration, AVC system is applied to the suspension mount.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

Sound Quality Evaluation on Noise Caused by Electric Power Steering Wheel Utilizing CNN based on Sound Metrics

2024-06-12
2024-01-2963
This research aims presents the method classifying the noise source and evaluating the sound quality of the noise caused by operating of electric power steering wheel in an electric vehicle. The steering wheel has been operated by the motor drive by electric power and it called motor-driven electric power (MDPS) system. If the motor is attached to the steering column of the steering device, it is called C-MDPS system. The steering device of the C-MDPS system comprises of motor, bearings, steering column, steering wheel and worm shaft. Among these components the motor and bearings are main noise sources of C-MDPS system. When the steering wheel is operated in an electric vehicle, the operating noise of the steering device inside the vehicle is more annoying than that in a gasoline engine vehicle since the operating noise is not masked by engine noise. Defects in the C-MDPS system worsen the operating noise of the steering system.
Technical Paper

Structure-Borne Path Identification of Rumbling Noise in a Passenger Car Based on In-Situ Blocked Force Transfer Path Analysis

2019-06-05
2019-01-1587
It is known that the major source of rumbling noise the combustion force of an engine. The combustion force excites the engine and induces vibrations of the powertrain. These vibrations are then transferred to the body of the vehicle via its structural transfer path. Moreover, the vibrations of the vehicle’s body emit internal vibra-acoustic noise. This noise is often referred to as the rumbling noise due to the structural borne path. If there are structural resonances among the structural paths such as the engine, transmission, mount bracket, suspension, and the vehicle’s body, the rumbling noise could be amplified. To identify the major resonances of the structural transfer path, classical transfer path analysis (CTPA) has been traditionally utilized. The method has a significant limitation in that it is necessary to decouple the substructures to obtain the contact force between individual components and to identify the transfer path of the structure-borne sound.
X