Refine Your Search

Topic

Author

Search Results

Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

A Development of the Holographic Lighting

2019-04-02
2019-01-0846
A signal lamp performs a function to inform the position and behavior of the vehicle. And it represents a specific design identity of the vehicle or brand identity. Recently it implements the unique three-dimensional effect while using a LED. However, a number of LEDs and complex form of the lens shape have to be applied, so results in the size, weight, cost increase. In this study, the hologram technology that is an exemplary technique for implementing the described three-dimensional image is applied. With a hologram, it is possible to reproduce a complex shape three-dimensional image by using a hologram film. Therefore the number of parts can be reduced. And it is possible to copy the film has a mass production benefits.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

A Study for Improving the Acoustic Performance of Dash Isolation Pad Using Hollow Fiber

2013-03-25
2013-01-0101
Usually, fibrous materials with porosity can dissipate the energy of the sound wave penetrating them, so can be the useful sound absorbing materials to reduce the noise in the vehicle. The fibrous materials have been used for the various types of automotive components as the sound absorbing materials, which can be placed close to the noise source, in the noise paths and near the receiver such as passengers. Although all materials can absorb a little amount of sound energy, the term “acoustical material” has been primarily applied to those materials that can provide the higher sound absorption performance above the ordinary levels. One of the examples of fibrous acoustic materials for automotive components is the sound absorbing felt composed of the fibers which have the several characteristics such as the material type, the cross-sectional shape and the fiber density (can be expressed as denier) related to the sound absorbing performance.
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Technical Paper

A Study of the Auxiliary Belt Drive System for Actual Fuel Saving

2017-03-28
2017-01-0898
The engine indicated torque is not delivered entirely to the wheels, because it is lowered by losses, such as the pumping, mechanical friction and front auxiliary power consumption. The front auxiliary belt drive system is a big power consumer-fueling and operating the various accessory devices, such as air conditioning compressor, electric alternator, and power steering pump. The standard fuel economy test does not consider the auxiliary driving torque when it is activated during the actual driving condition and it is considered a five-cycle correction factor only. Therefore, research on improving the front end auxiliary drive (FEAD) system is still relevant in the immediate future, particularly regarding the air conditioning compressor and the electric alternator. An exertion to minimize the auxiliary loss is much smaller than the sustained effort required to reduce engine friction loss.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

A Study on Improvement of Sitting Posture Stability for Heavy Truck Drivers

2018-04-03
2018-01-1319
The driver’s seat in heavy trucks is designed for an upright driving posture with narrow back and cushion angles; thus, the seatback offers very little support. This makes the sitting posture prone to shifting during long trips, leading to loss of comfort and increase in fatigue. Sitting posture stability allows initial posture to be maintained during long drives, and the lack of stability causes fatigue and body pain during the drive. This study confirmed that enhancement of sitting posture stability of the driver’s seat in heavy trucks requires appropriate support from the cushion. The study also analyzed the support characteristics of each part of the cushion, and presented development guidelines of new cushion. Although subjective assessments of sitting posture stability have been performed, this study presented a method for quantitative and efficient assessment of sitting posture stability using the PAM-COMFORT simulation tool and virtual testing.
Technical Paper

A Study on Optimization of the Multi-function Drive Plate for High Performance Engine

2007-04-16
2007-01-0798
The multi-function drive plate used for a high performance engine was developed by optimizing its structure, material and design features. To do so, the investigation of the load characteristics was done in order to increase FEA reliability. DFSS was utilized for optimizing the design features and defining the effect of geometric parameters on the durability. The durability of the optimized drive plate was verified by comparing the FEA and test results with other drive plates which were already verified. Finally, the real powertrain test was done to confirm its durability for a high performance engine.
Technical Paper

A Study on Reliability-Based Maximum Service Temperature Estimation of Plastic Automotive Parts

2024-04-09
2024-01-2421
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed.
Journal Article

A Study on the Impact Resistance of Plastic Underbody Parts

2016-04-05
2016-01-0515
Impact resistance of plastic underbody parts was studied using simulated injection-molded specimen which can be tested according to different types of material used, injection molding variants like position and number of injection molding gates, and features of ribs. Material applied was glass fiber reinforced polyamide which can be used in underbody parts. Test was performed using several combinations of injection molding gates and rib types. From the test result, optimal design guide for plastic underbody parts was determined. Also, new high impact resistant plastic material made of glass fiber reinforced polyamide 66 (PA66) and polyamide 6 (PA6) alloy was developed and the material properties useful for CAE were determined. As a case study, oil pan and muffler housing were designed following the optimal design guide and CAE. And the reliability of the sample muffler housing designed was verified.
Technical Paper

A Study on the Influence of Plastic Intake Manifold on the Performance and NVH of In-line 4 Cylinder Gasoline Engine

1998-02-01
980728
The primary purpose of using a plastic material instead of conventional aluminum cast for intake manifold is to reduce its weight and cost. Moreover, the use of plastic for intake manifold is regarded as a key for further development of so called an “intake modular system”. As a secondary effect, the engine power can be increased with the help of improved interior surface roughness and lowered air temperature. With regard to NVH, however, plastic intake manifold is considered somewhat negative since it is less rigid and less dense than aluminum one. In this paper, the mechanism that plastic intake manifold affects the performance and NVH of in-line 4 cylinder gasoline engine is presented. In connection with engine performance, air flow efficiency of not only intake manifold itself but also other components of intake system and also cylinder head is evaluated.
Technical Paper

A Study on the Optimum Reduction of Required Brake Fluid Level for Improvement of the High Speed Continuous Brake Distance

2019-09-15
2019-01-2121
The high speed continuous braking distance assessment is the worst condition for thermal fades. This study was conducted to investigate the relationship between fade characteristic and friction materials & brake fluid amount for improving braking distance. So, we used the dynamometer to measure the friction coefficient, braking distance and required brake fluid amount. Through the measurements, the research was carried out as follows. First of all, we studied the influence of friction coefficient about different shapes (chamfer shape, area of the friction material, number of slots) on the same friction material. Secondly, we knew the effects of braking distance by the shape of the friction material. Through these two studies, the shape of the friction material favorable to the fade characteristics was derived. Finally, we measured the amount of required brake fluid in caliper after 10 consecutive braking cycles through Dynamometer.
Journal Article

A Study on the Role of TRIZ in DFSS

2012-04-16
2012-01-0068
The Design For Six Sigma (DFSS) process consists of four phases, identification & definition of opportunity, concept development, design optimization, and design verification. In the phase of concept development, TRIZ (Russian acronym for Theory of Inventive Problem Solving) is useful for creating new ideas from the present ideas, which includes the trimming strategy, the antidote strategy, and the picket fence strategy. In this paper, systems of a vehicle such as Variable Compression Ratio (VCR) engine, windshield wiper blade, and Continuously Variable Valve Actuation (CVVA) of engine, are selected and new concepts for each system are created by applying the previously mentioned three strategies. FMEA (Failure Mode and Effects Analysis), the latter part in the phase of concept development in DFSS, is conducted for newly generated concepts of systems that are mentioned above. As a result of FMEA, it is found that the wind lift of the wiper blade can be a serious problem.
Technical Paper

A Trend Line Analysis of the Insertion Loss Test Data and Application to Sound Transmission Loss Simulation

2022-06-15
2022-01-0959
In this paper, an application process is studied at which the insertion loss (IL) test data of sound insulating parts or noise control treatments are utilized for the sound transmission loss (STL) simulation of the trimmed dash structure. The considered sound barrier assemblies were composed of a felt layer, a mass layer, and a decoupler layer. Flat samples of sound barrier assemblies with several different thicknesses were prepared, and ILs of them were measured by using a sound transmission loss facility. Flat samples were assumed to have mass-spring-mass resonance frequencies. The mass was set as the area mass of the sound barrier layer of the felt layer and the mass layer. The spring constant of the decoupler layer was assumed as the multiplication of that of an air spring and a spring correction factor.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

An Application of Magnesium Alloy to Passenger Air Bag Housing

2000-03-06
2000-01-1115
To achieve a mass goal and minimize the bell mouthing phenomenon of Passenger Air Bag Housing which takes place when the air bag is in explosive action and detrimental to the safety of passenger side because excessive canister bell mouthing may distort and crash the top surface of instrument panel, a study on the replacing process of a PAB housing to a different material and process was performed. The explosive action of current steel PAB housing was firstly analized to evaluate the reaction forces transferred through the PAB and find out the adaptable material for replacing process. Due to the properties among the die casting alloys, the AM60B alloy was chosen for our new material for PAB housing. Then, stress analysis by the finite element method was performed for a design modification of magnesium one piece housing.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Journal Article

Analysis of Formaldehyde Scavenger and Its Reaction Products in POM Using Mass Spectrometry

2021-04-06
2021-01-0360
To meet the indoor air quality guideline of newly manufactured vehicles in Korea, China, and other countries, low formaldehyde grade POM (Polyoxymethylene) is used for interior parts essentially. In this paper, formaldehyde scavengers from of 2 commercial low formaldehyde grade POM pellets were identified by LC-MS (Liquid chromatograph-Mass spectrometer) as sebacic dihydrazide and dodecanedioic dihydrazide respectively. The reaction products between formaldehyde and formaldehyde scavengers were also detected, which were converted from hydrazide to hydrazone. So, this kind of additive would be gradually consumed by repetitive molding process or exposure to heat according to formaldehyde emission increase. We are expecting to apply this analytical method and result for quality control and benchmark of low formaldehyde grade POM.
X