Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Abnormal Combustion Induced by Combustion Chamber Deposits Derived from Engine Oil Additives in a Spark-Ignited Engine

2014-11-11
2014-32-0091
Although metallic compounds are widely known to affect combustion in internal combustion engines, the potential of metallic additives in engine oils to initiate abnormal combustion has been unclear. In this study, we investigated the influence of combustion chamber deposits derived from engine oil additives on combustion in a spark-ignited engine. We used a single-cylinder four-stroke engine, and measured several combustion characteristics (e.g., cylinder pressure, in-cylinder ultraviolet absorbance in the end-gas region, and visualized flame propagation) to evaluate combustion anomalies. To clarify the effects of individual additive components, we formed combustion products of individual additives in a combustion chamber prior to measuring combustion characteristics. We tested three types of metallic additives: a calcium-based detergent, a zinc-based antiwear agent, and a molybdenum-based friction modifier.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Effect of Engine Oil Additives on Motorcycle Clutch System

2003-05-19
2003-01-1956
The energy conserving by engine oils has been required from the viewpoint of the environmental issue. The fuel efficiency of passenger car engine oils has been improved by adding friction modifiers. However, engine oils containing friction modifiers can not be applied to 4-stroke motorcycles. Because motorcycles normally have a wet clutch system inside the crankcase and such engine oils can decrease the clutch capacity.1) ∼ 2) Therefore, it is important for motorcycle engines to investigate additives, which can increase friction coefficient on paper-based friction materials. In this study, friction coefficients of engine oils formulated with different additives such as dispersants and detergents were evaluated with a reciprocating friction tester. Several types of polybutenyl succinimides, sulfonates, phenates and salicylates were used as dispersants and detergents.
Journal Article

Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine

2014-10-13
2014-01-2785
Gasoline engine downsizing combined with a turbocharger is one of the more effective approaches to improve fuel efficiency without sacrificing power performance. The benefit comes from lower pumping loss, lower mechanical friction due to ‘downsizing’ of the engine displacement and ‘down-speeding’ of the engine by using higher transmission gear ratios which is allowed by the higher engine torque at lower engine speeds. However abnormal combustion referred to as Low-Speed Pre-ignition (LSPI) is known to be able to occur in low-speed and high-torque conditions. It is a potential restriction to maximize the engine performance and its benefit, therefore prevention of LSPI is strongly desired for long-term durability of engine performance. According to recent technical reports, auto-ignition of an engine oil droplet in a combustion chamber is believed to be one of major contributing factors of LSPI and its formulations have a significant effect on LSPI frequency.
Technical Paper

Experimental Analysis of Connecting Rod Bearing Seizures in Four-Cycle Gasoline Engines

1989-09-01
892114
In this work, the connecting rod bearing seizures as one of the problems latent to the high-output, high-speed engines are investigated. Studies are conducted on the evaluation of anti-seizure properties of a single connecting rod bearing installed in the test rig as well as in commercial engines. As the results of the former study, the bearing wear is affected by the rod surface roughness (Rmax ) and the oil temperature (viscosity). Further, frequent metal to metal contacts of bearings are observed by the electrical measuring apparatus under higher temperature, and full load conditions. While in the latter, it is found the total heat generated of the bearing is the important factor affective to the bearing seizures, and can be analyzed by using PV value, rod surface roughness and oil viscosity.
Technical Paper

Frictional and Wear Properties of Diamond-Like Carbon Films with Lubricant Additives

2023-04-11
2023-01-0871
Diamond-Like Carbon (DLC) is a promising engine material for reducing friction and wear on sliding parts. By contrast, MoDTC lubricant additives are known to promote the wear of a-C:H films. However, the mechanism that promotes wear and the formation of tribofilms on DLC parts when in contact with molybdenum-based lubricant additives has not been sufficiently studied. The purpose of this research is to determine the wear promotion mechanism and formation of tribofilm on DLC by lubricant additives by comparing friction and wear properties. We conducted friction and wear tests using a tribometer with DLC (ta-C, ta-C:H, a-C, and a-C:H) blocks, FC250 (cast iron) rings, and oils containing lubricant additives (MoDTC, MoDTP, and Mo without DTC ligand) by observing and analyzing the sliding surfaces of specimens. No wear was observed for any of the DLCs (ta-C, ta-C:H, a-C:H, and a-C) in combination with oils containing MoDTP or Mo without DTC ligands.
Technical Paper

Fuel Saving Four-Stroke Engine Oil for Motorcycles

2006-11-13
2006-32-0014
Energy conserving performance by engine oils is required even for motorcycles from the viewpoint of environmental issues. The fuel efficiency of passenger car engine oils has been improved through lower viscosity and usage of friction modifiers. However, engine oils containing friction modifiers such as Mo compounds may not be applied to four-stroke motorcycles, because motorcycles normally have a wet clutch system inside the crankcase and such engine oils can decrease the clutch capacity. Therefore, it is important to investigate the effects of oil formulation in order to develop motorcycle engine oils, which can improve fuel efficiency and preserve clutch capacity1)∼2). In this study, fuel efficiency of prototype oils was evaluated with a motorcycle engine motoring tester. In addition, friction coefficients of engine oils formulated with different additives such as dispersants and detergents in clutch system were evaluated with an SAE No. 2 clutch friction tester.
Journal Article

Impact of Boundary Lubrication Performance of Engine Oils on Friction at Piston Ring-Cylinder Liner Interface

2014-10-13
2014-01-2787
To explore the measures that can be used to improve the fuel economy of internal combustion engines, we investigated how friction at the piston ring-cylinder liner interface is influenced by the boundary lubrication performance of engine oils. We formulated several engine oils with varying boundary lubrication performance and tested them for ring-liner friction by using a floating liner friction tester. We used friction modifiers (FMs) to modify the boundary lubrication performance of engine oils. We found that ring-liner friction is well correlated with the friction coefficients in boundary lubrication regimes when measured by a laboratory friction tester. We also found that the impact of the boundary lubrication performance of engine oils was emphasized in low viscosity engine oils. It makes it possible for improved boundary lubrication performance to inhibit or overcome the viscosity reduction-induced increase of friction energy.
Journal Article

Influence of Bio Diesel Fuel on Engine Oil Performance

2010-05-05
2010-01-1543
To evaluate the influence of FAME, which has poor oxidation stability, on engine oil performance, an engine test was conducted under large volumes of fuel dilution by post-injection. The test showed that detergent consumption and polymerization of FAME were accelerated in engine oil, causing a severe deterioration in piston cleanliness and sludge protection performance of engine oil.
Technical Paper

JCMAS New Grease Specifications for Construction Machinery

2006-10-31
2006-01-3504
Since construction machinery manufacturers recommend various brands and types of greases for their machinery, customers would benefit from a standardized grease which can be used in all construction machinery. Furthermore, construction machinery manufacturers have many experiences of field problems caused by commercially available and commonly used EP Lithium greases. Therefore, the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA) has developed a new grease specification called “Japan Construction Mechanization Association Specification (JCMAS) GK,” for construction equipment. The JCMAS GK includes requirements for National Lubrication and Grease Institute (NLGI) No. 1 and No. 2 consistency grades. The JCMAS GK greases have enough lubricating properties for periodical grease fitting of most construction machines, hydraulic excavators, bulldozers and wheel loaders. The JCMAS GK greases are applicable from -20 to +130 degrees Celsius.
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP

2008-09-09
2008-32-0005
Just as CO2 reduction is required of four wheeled vehicles for environmental protection, similar environmental concerns drive the development of motorcycle oil technology. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Mr. Ito and his co-authors1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods:JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Performance of Motorcycle Engine Oil with Sulfur-Based Additive as Substitute Zn-DTP (Part II)

2009-11-03
2009-32-0080
As well as a four-wheeled vehicle, in the field of motorcycle, development of the CO2 reduction technology and practical use are required for global environment. Zinc dialkyldithiophosphate (Zn-DTP) type additives are widely used for engine oil formulations. However, phosphorus compounds are environmental load materials. The reduction of the quantity of phosphorus compounds in engine oils is required to reduce poisoning of three-way catalysts used to purify exhaust gases from internal combustion engines. Ito1) reported that they developed a sulfur-based additive as a substitute for Zn-DTP. Their non-phosphorus engine oil formulation for four-wheeled vehicles with a sulfur-based additive was examined to evaluate its anti-wear performance using the following test methods: JASO M328 for gasoline engines (KA24E) and JASO M354 for Diesel engine (4D34T4).
Technical Paper

Piston Detergency and Anti-Wear Performance of Non-Phosphorus and Non-Ash Engine Oil

2019-01-15
2019-01-0021
The deposition of ash derived from engine oil on the surface of diesel particle filters (DPF) has recently been reported to degrade the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst, reducing the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus, non-ash engine oil (NPNA) that does not contain metal-based detergents or zinc dialkyldithiophosphate (ZnDTP). Various engine tests were performed, and we confirmed that under normal running conditions, the NPNA oil had a sufficiently high piston detergency and wear resistance-two important requirements for engine oil-to meet current American and Japanese standards. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

Steric Effects on Tribochemical Reactivity in Detergent-Containing Lubricants under Nanoconfinement

2017-10-08
2017-01-2347
Modern formulation in a wide variety of lubricants including engine oils and transmission fluids is designed to control friction through film-forming tribochemical reactions induced by the functional additives mixtures. Although many cases on the synergistic or antagonistic effects of additives on friction have been reported, their mechanisms are poorly understood. This study focused on the influences of metallic detergents on tribochemical reactions. We examined the mechanical properties of detergent-containing lubricants confined at a single-asperity contact and their contributions to tribochemical phenomena. We found that detergents enlarged the confinement space required for generating repulsive force and shear resistance. This means that these detergents provide steric effects under nanoconfinement at interfacial contacts.
Technical Paper

Study of Lower Viscosity Motorcycle Engine Oils for Fuel Saving-Anti-fatigue Performance-

2011-11-08
2011-32-0634
1 Fuel savings by engine oil have been requested for two-wheeled vehicles from the viewpoint of environmental issues. In four-wheeled vehicles, reduction of oil viscosity and addition of friction modifiers have been effective in improving fuel efficiency. However, direct application of engine oil for four-wheeled vehicles to two-wheeled vehicles is difficult. In a four-cycle two-wheeled vehicle, the transmission, gears, and a wet clutch system are imbedded within the engine1). Engine oil must display a remarkable performance as it is required to function as transmission oil and to improve anti-metal fatigue life and clutch performance2), 3). If fuel efficiency is improved by reducing the viscosity of engine oil used in two-wheeled vehicles, the fatigue life tends to worsen. Therefore, reduction in oil viscosity is difficult to achieve.
Technical Paper

The Development of Lubricating Oils for Rotary Racing Engines

1992-10-01
922375
In order to achieve the highest power output and lowest fuel consumption for the rotary engine in endurance race such as Le Mans, two types of lubricating oils were developed by conducting a single - rotor engine test at the rotational speed of 7500 rpm under full load. One was the engine oil for the lubrication of the combustion chamber. The other was a so - called system oil for lubrication of the engine system outside the combustion chamber. The conclusions obtained from the development are as follows: 1) Engine oil for the combustion chamber The engine oil greatly influences spitback phenomenon1) which can cause rotary engine trouble in an endurance race. The spitback phenomenon is decreased by the decrease of carbonaceous deposit and ash in the apex seal grooves.
Technical Paper

The Development of PAG Refrigeration Lubricants for Air Conditioner with HFC134a

1995-02-01
951052
In order to clarify the relationship between the chemical structure of PAG (polyalkylene glycol) and the performance characteristics as the refrigeration lubricants used for HFC134a, performance tests were conducted using PAGs with different end groups and alkylene oxide chains in the presence of HFC134a. Newly developed dimethyl ether capped PAGs having more than 70 mol.% PO (propylene oxide) to less than 30 mol.% EO (ethylene oxide) as a monomer ratio were the most preferable of all PAGs tested. The refrigeration lubricants using these PAGs have been successfully introduced into the market for mobile air conditioning systems with refrigerant HFC134a.
Technical Paper

The Effect of Ashless Additives for Non-Phosphorus and Non-Ash Engine Oil on Piston Detergency

2015-09-01
2015-01-2031
Recently, deposition of ash derived from engine oil on the surface of a diesel particle filter (DPF) has been reported to worsen the performance of the DPF. It is generally known that phosphorus in engine oil is adsorbed on the surface of an automotive exhaust catalyst and reduces the performance of the catalyst. Thus, the amounts of ash and phosphorus in engine oil have been decreased. We have developed a non-phosphorus and non-ash engine oil (NPNA) that does not contain metal-based detergents and zinc dialkyldithiophosphate (ZnDTP). We performed a performance test for NPNA using an actual engine and reported that the piston detergency and anti-wear performance of NPNA were sufficiently high. However, the piston detergency of NPNA required further improvement when engine running conditions were more severe.
Technical Paper

The performance of diesel engine oil using ashless anti-wear additive and detergent

2023-09-29
2023-32-0027
To comply with increasingly strict emission regulations, diesel vehicles are equipped with Diesel Particulate Filters (DPF) to capture fine particulate matter (PM) from exhaust gas. However, due to the limited capacity of DPF to capture soot, periodic regeneration processing is required to burn it off. The ash created by metal-based additives in engine oil accumulates in DPF, leading to issues such as increased regeneration frequency and decreased fuel efficiency. To solve this problem, researchers have developed diesel engine oil with reduced ash content. However, the authors are taking it a step further and developing a diesel engine oil without metal-based detergents and anti-wear additives, for even more significant environmental impact reduction. This paper describes the development of an ashless engine oil with DH-2 performance, the effects of the developed engine oil on DPF, and the results of engine and actual field tests.
X