Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Barriers to Entry in Automotive Production and Opportunities with Emerging Additive Manufacturing Techniques

2016-04-05
2016-01-0329
Conventional car manufacturing is extremely capital and energy-intensive. Due to these limitations, major auto manufacturers produce very similar, if not virtually identical, vehicles at very large volumes. This limits potential customization for different users and acts as a barrier to entry for new companies or production techniques. Better understanding of the barriers for low volume production and possible solutions with innovative production techniques is crucial for making low volume vehicles viable and accelerating the adoption of new production techniques and lightweight materials into the competitive marketplace. Additive manufacturing can enable innovative design with minimal capital investment in tooling and hence should be ideal for low and perhaps high volume parts. For this reason, it was desired to evaluate potential opportunities in manufacturing automotive parts with additive techniques.
Technical Paper

Catalytic Converter Design for Manufacturing Using Monte-Carlo Simulation

2000-10-16
2000-01-2878
A stochastic simulation based on the Monte-Carlo method was developed to study the effect of substrate, mounting mat and converter shell dimensional tolerances on the converter manufacturing process. Results for a stuffed converter with nominal gap bulk density (GBD) 1.00 g/cm3 show an asymmetric probability density function ranging from 0.90 to 1.13 g/cm3. Destructive and non-destructive GBD measurements on oval and round production converters show close correlation with the Monte-Carlo model. Several manufacturing options offering tighter GBD control based on component sorting and matching are described. Improvements ranging from 28% and 64% in GBD control are possible.
Technical Paper

Development of Portable Self Contained Phase Shifting Digital Shearography for Composite Material Testing

2005-04-11
2005-01-0590
The use of composite materials in the automotive industry has become increasingly widespread. With this increase in use, techniques for non-destructive testing (NDT) have become more and more important. Various optical NDT inspective methods such as holography, moiré techniques, and shearography have been used for material testing. Among these methods, shearography appears to be most practical. Shearography has a simple optical setup due to its “self-referencing” system, and it is relatively insensitive against rigid-body motions. Measurements of displacement derivatives, and thus strain directly, rather than the displacement itself is achieved through this method. Therefore shearography detects defects in objects by correlating anomalies of strain which are usually easier than correlating the anomalies of the displacement itself, as in holography. To date shearography has shown potential as a NDT tool for identifying defects in small structures.
Technical Paper

Impact of Light-Weight Design on Manufacturing Cost - A Review of BMW i3 and Toyota Corolla Body Components

2016-04-05
2016-01-1339
OEMs are investigating opportunities to reduce vehicle mass, driven by a need to meet upcoming CAFE targets, increase the range and reduce battery size of EVs. A number of lightweight materials including high strength steels, aluminum alloys, plastics and composites are now in production. To facilitate development of corporate R&D and commercialization plans for new materials, it is beneficial to understand the current manufacturing costs for production components, and their impact on piece price at different volumes. This paper investigates design and cost impact of light-weighting with respect to front door and floor assembly of Toyota Corolla and BMW i3. Toyota Corolla has a traditional steel body and is sold in high volumes while BMW i3 has relatively low annual sales and is primarily made of composite, aluminum and plastic parts.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Leveraging Product Configurators in Service Parts and Aftermarket Applications

2001-11-12
2001-01-2752
Product configurators are employed to select and spread bills of material for production builds. Service parts and aftermarket parts typically do not participate in the product configuration process. It is assumed that service parts are identical to, or directly related to, the parts used in production. This is not always the case. Often service requires a bill of material that differs significantly from the production bill - most commonly when customers request add on features at the dealership. Requests for add on features may occur soon after the delivery of a newly built vehicle to a dealer or any point in the operational life of the vehicle. There is an opportunity to leverage production order coding and product configuration processes to support the product after production build. Products with significant complexity and variation may benefit from a ‘service configuration’ process in addition to the ‘production configuration’ process.
Technical Paper

Measurement of Transfer Case Imbalance

2005-05-16
2005-01-2297
Different methodologies to test transfer case imbalance were investigated in this study. One method utilized traditional standard single plane and two plane methods to measure the imbalance of the transfer case when running it on a dynamic balance machine at steady RPM, while a second method utilized accelerometers and a laser vibrometer to measure vertical vibration on the transfer case when running it on a dynamic balance machine in 4 Hi open mode during a run up from 1000 to 4000 RPM with a 40 RPM difference between the input and output shaft speeds. A comparison of all of the measurements for repeatability and accuracy was done with the goal of determining an appropriate and efficient method that generates the most consistent results. By using the traditional method, the test results were not repeatable. This may be due to the internal complexity of transfer cases. With the second method, good correlation between the measurements was obtained.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Press-Line Simulation in Stamping Process

2004-03-08
2004-01-1047
The automotive industry is rapidly implementing computer simulation in every aspect of their processes mainly to decrease the time required to bring new models to market. Computer simulation can also be used to reduce the cost of vehicle development and manufacturing. A major portion of the manufacturing cost associated with automotive stamping lies in the process design, build and tryout of production dies and in automation of the transfer equipment. Press home-line tryout is largely a trial-and-error process relying heavily on the skills and experience of tool and die makers. To reduce this dependence on human skills and effort, press-line simulation can be effectively utilized to verify the design accuracy thereby reducing the changes needed to rework the production die/tool. The entire press-line with all its complete accessories can be modeled and checked for design errors similar to the try-out conducted in the production plant.
Technical Paper

Representation of Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach

1999-05-17
1999-01-1680
In this study, a simplified approach to modeling the dynamics of damping treatments in FEA (Finite Element)/ SEA (Statistical Energy) models is presented. The basic idea is to represent multi-layered composite structures with an equivalent layer. The properties of the equivalent layer are obtained by using the RKU (Ross, Kerwin and Ungar) method. The procedure presented here does not require any special pre-processing of the finite element input file and it does not increase the number of active degrees of freedom in the model, thereby making it possible to include the effect of these treatments in large system/subsystem level models. The equivalent properties obtained from RKU analysis can also be used in the SEA system models. In this study, both unconstrained and constrained layer damping treatments applied to simple structures (e.g., flat panels) as well as production vehicle components are examined.
Technical Paper

Simulation Method of the Exhaust System on a Durability Bench

2011-10-04
2011-36-0228
The durability certification is one of the critical paths of a mass production vehicle project. For structural components, the development and the execution of experimental tests supported by finite element method (FEM) became mandatory for implementation time reduction, especially when on-board diagnoses (OBD) legislation turns even small cracks in severe structural failures. This job aims to show a simulation method of structural efforts in an exhaust system on a test bench. The exhaust pipe is previously analyzed with FEM and the critical points are instrumented with strain gage in vehicles. The strains are measured and its values reproduced in a dynamometer bench using a shaker with adjustable amplitudes. Therefore, difficulties to reproduce temperature and strain were overcome and the test shows repeatability. The variation of shaker device amplitude makes it possible to define the life cycle curve of the part.
Technical Paper

Tailor-Welded Aluminum Blanks for Liftgate Inner

2007-04-16
2007-01-0421
Tailor welded steel blanks have long been applied in stamping of automotive parts such as door inner, b-pillar, rail, sill inner and liftgate inner, etc. However, there are few known tailor welded aluminum blanks in production. Traditional laser welding equipment simply does not have the capability to weld aluminum since aluminum has much higher reflectivity than steel. Welding quality is another issue since aluminum is highly susceptible to pin holes and undercut which leads to deterioration in formability. In addition, high amount of springback for aluminum panels can result in dimension control problem during assembly. A tailor-welded aluminum blank can help reducing dimension variability by reducing the need for assembly. In this paper, application of friction stir and plasma arc welded blanks on a liftgate inner will be discussed.
Technical Paper

Understanding Laboratory Versus In-Vehicle Performance of Sprayable and Sheet Applied Damping Materials

2001-04-30
2001-01-1465
Liquid spray applied damping materials have potential advantages over conventional sheet damping materials in automotive body panel vibration applications. In order to understand the acoustical impact, a laboratory based NVH study was conducted to compare the damping and stiffness performance characteristics of various sprayable damping materials versus the production damping treatment. Based on this comparison, a criteria was developed to select potentially viable sprayable damping materials for vehicle testing. In-vehicle tests were also performed and compared to the laboratory findings to understand how well the results correlate. This paper discusses a criteria for selecting sprayable damping materials based on bench-top tests for vehicle applications, and the potential benefits of sprayable materials.
X