Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

1998-10-19
982456
New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these vehicles was for street collection and transporting the collected refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines.
Technical Paper

A One-Dimensional Model for Square and Octo-Square Asymmetric Particulate Filters with Correct Description of the Channel and Wall Geometry

2018-04-03
2018-01-0951
Asymmetric particulate filters (PF), where the inlet channel is wider than the outlet channel, are commonly used because of their greater capacity for ash. Somewhat surprisingly, very few models for asymmetric PFs have been published and none of these gives a correct/detailed description of the geometry. For example, octahedral channels may be treated as if they were square or the tapering walls between the inlet and outlet channels treated as if they were rectangular in cross section. Alternatively, the equations may be presented in generic form in terms of channel cross-sectional areas and perimeters, but without giving any indication of how to calculate these. This paper aims to address these deficiencies with a model that correctly describes the geometry of square and octo-square asymmetric PFs. Expressions for the solid fraction of the PF (which affects thermal mass) and channel cross section and perimeter (both when clean and soot/ash loaded) are presented.
Technical Paper

A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine

1998-02-23
980895
Until a proper fueling infrastructure is established, vehicles powered by natural gas must have bi-fuel capability in order to avoid a limited vehicle range. Although bi-fuel conversions of existing gasoline engines have existed for a number of years, these engines do not fully exploit the combustion and knock properties of both fuels. Much of the power loss resulting from operation of an existing gasoline engine on compressed natural gas (CNG) can be recovered by increasing the compression ratio, thereby exploiting the high knock resistance of natural gas. However, gasoline operation at elevated compression ratios results in severe engine knock. The use of variable intake valve timing in conjunction with ignition timing modulation and electronically controlled exhaust gas recirculation (EGR) was investigated as a means of controlling knock when operating a bi-fuel engine on gasoline at elevated compression ratios.
Technical Paper

A Study of the Catalytic Reduction of NOx in Diesel Exhaust

1996-10-01
962042
Reduction of nitrogen oxides in Diesel exhaust gas is a challenging task. This paper reports results from an extensive study using Pt-based catalysts involving synthetic gas activity testing (SCAT), engine bench testing and tests on passenger cars. Preliminary SCAT work highlighted the importance of Pt-dispersion, and both SCAT and bench engine testing yielded comparable NOx conversions under steady state conditions at high HC:NOx ratios. On passenger cars in the European cycle without secondary fuel injection NOx conversion was lower than obtained in the steady state tests. Better conversion was obtained in the FTP cycle, where secondary injection was employed. Higher HC:NOx, ratios and more favourable temperature conditions which were present in the exhaust contributed to this higher conversion.
Technical Paper

A Study of the Effects of 30% Biodiesel Fuel on Soot Loading and Regeneration of a Catalytic DPF

2007-07-23
2007-01-2023
Biofuels are a renewable energy source. When used as extenders for transportation fuels, biofuels contribute to the global reduction of Green House Gas and CO2 emissions from the transport sector and to security and independence of energy supply. On a “Well to Wheel” basis they are much more CO2 efficient than conventional fossil fuels. All vehicles currently in circulation in Europe are capable of using 5 % biodiesel. The introduction of higher percentages biodiesel needs new specific standards and vehicle tests validation. The development of vehicles compatible with 30% biodiesel blends in diesel fuel includes the validation of each part of both engine and fuel vehicle systems to guarantee normal operation for the entire life of the vehicle.
Technical Paper

A Validated Numerical Simulation of Diesel Injector Flow Using a VOF Method

2000-10-16
2000-01-2932
Progress in Diesel spray modelling highly depends on a better knowledge of the instantaneous injection velocity and of the hydraulic section at the exit of each injection hole. Additionally a better identification of the mechanisms which cause fragmentation is needed. This necessitates to begin with a precise computation of the two-phase flow which arises due to the presence of cavitation within the injectors. For that aim, a VOF type interface tracking method has been developed and improved (Segment Lagrangian VOF method) which allows to describe numerically the onset and development of cavitation within Diesel injectors. Furthermore, experiments have been performed for validation purpose, on transparent one-hole injectors for high pressure injection conditions. Two different entrance geometries (straight and rounded) and various upstream and downstream pressure levels have been considered.
Journal Article

A Work-Based Window Method for Calculating In-Use Brake-Specific NOx Emissions of Heavy-Duty Diesel Engines

2008-04-14
2008-01-1301
A work-based window method has been developed to calculate in-use brake-specific oxides of nitrogen (NOx) emissions for all engine speeds and engine loads. During an in-use test, engine speed and engine torque are read from the engine's electronic control unit, and along with time, are used to determine instantaneous engine power. Instantaneous work is calculated using this power and the time differential in the data collection. Work is then summed until the target amount of work is accumulated. The emissions levels are then calculated for that window of work. It was determined that a work window equal to the theoretical Federal Test Procedure (FTP) cycle work best provides a means of comparison to the FTP certification standard. Also, a failure criterion has been established based on the average amount of power generated in the work window and the amount of time required to achieve the target work window to determine if a particular work window is valid.
Technical Paper

Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop

2011-09-11
2011-24-0187
Diesel particulate filters (DPFs) are recognized as the most efficient technology for particulate matter (PM) reduction, with filtration efficiencies in excess of 90%. Design guidelines for DPFs typically are: high removal efficiency, low pressure drop, high durability and capacity to resist high temperature excursions during regeneration events. The collected mass inside the trap needs to be periodically oxidized to regenerate the DPF. Thus, an in-depth understanding of filtration and regeneration mechanisms, together with the ability of predicting actual DPF conditions, could play a key role in optimizing the duration and number of regeneration events in case of active DPFs. Thus, the correct estimation of soot loading during operation is imperative for effectively controlling the whole engine-DPF assembly and simultaneously avoidingany system failure due to a malfunctioning DPF. A viable way to solve this problem is to use DPF models.
Technical Paper

Advanced Onboard Fuel Processor for PEM Fuel Cell Vehicles

2006-04-03
2006-01-0216
To reduce greenhouse gas emissions such as CO2, automakers are actively pursuing alternative propulsion systems. Improvements to current engine technology are being investigated along with new power plant technologies. Fuel Cell Vehicles offer an exciting option by producing electric power through a reaction that combines hydrogen and oxygen to make water. However, hydrogen storage onboard vehicles and construction of an expensive hydrogen distribution and fueling infrastructure remain as challenges today. In addition, greenhouse gas emissions from the production of hydrogen must be considered since most hydrogen is currently produced from non-renewable sources. While these issues are being worked on, Renault has chosen to pursue a fuel cell vehicle with a fuel processor that converts gasoline and other liquid fuels to hydrogen onboard the vehicle.
Technical Paper

Advanced Three-Way Catalyst Formulations for High Temperature Applications

1993-03-01
930076
Enhancements in the thermal stability of three-way catalysts have been achieved by: 1) developing improved methods for the incorporation of ceria into catalyst formulations and 2) identifying a proprietary stabilizer which reduces the rate of ceria sintering at high temperature. Improvements in thermal stability are demonstrated by comparing the FTP and engine dynamometer performance of new formulations with a standard formulation after aging on several high temperature engine dynamometer cycles.
Technical Paper

Air Quality and Odors Evaluation for Passengers Compartment

1995-02-01
950016
The paper presents the VALEO and RENAULT approach to study odor problems for passengers compartment. The first part describes the method chosen to form a panel, and the second part presents a vehicle application.
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

An Evaluation of the Long Term Effects of Gasoline Sulphur Level on Three-Way Catalyst Activity

1995-10-01
952421
A test programme has been conducted to study any potential long term effects of gasoline sulphur on catalyst performance, using a newly developed transient engine-bed ageing cycle. The ageing cycle, which was based on repeated European Extra Urban Drive Cycles, was chosen to ensure that the catalyst experienced a realistically wide range of temperatures and space velocities, together with transients, idle and periods of overrun. Two nominally identical platinum/rhodium catalysts (manufactured from the same batch) with matched lambda sensors, were aged for a period of 80,000 km each, one being aged using a gasoline containing 50 mg/kg (ppm wt) sulphur, the other being aged on the same fuel doped to 450 ppm wt S. The emissions performance of both catalysts was measured after 6,000, 40,000 and 80,000 km ageing, by fitting the catalysts to a test vehicle, and performing emissions tests over the European test cycle at both sulphur levels.
Technical Paper

An Investigation into the Emissions Reduction Performance of an SCR System Over Two Years' In-Use Heavy-Duty Vehicle Operation

2005-04-11
2005-01-1861
Increasingly stringent oxides of nitrogen (NOx) and particulate matter (PM) regulations worldwide have prompted considerable activity in developing emission control technology to reduce the emissions of these two constituents from heavy-duty diesel engines. NOx has come under particular scrutiny by regulators in the US and in Europe with the promulgation of very stringent regulation by both the US Environmental Protection Agency (EPA) and the European Union (EU). In response, heavy-duty engine manufacturers are considering Selective Catalytic Reduction (SCR) as a potential NOx reduction option. While SCR performance has been well established through engine dynamometer evaluation under laboratory conditions, there exists little data characterizing SCR performance under real-world operating conditions over time. This project evaluated the field performance of ten SCR units installed on heavy-duty Class 8 highway and refuse trucks.
Technical Paper

An Investigation into the Influence of LPG (Autogas) Composition on the Exhaust Emissions and Fuel Consumption of 3 Bi-Fuelled Renault Vehicles

1996-05-01
961170
Studies using a bi-fuelled (autogas/gasoline) Renault Laguna vehicle meeting °the 1996 European exhaust emission legislation has demonstrated that over the European test cycle at 25°C the LPG operated vehicle provides substantial benefits of reduced emissions compared to unleaded reference gasoline. At lower test temperatures (i.e. 5°C) even larger reduction in emissions have been observed. Lower CO (up to 95% at -5°C and 65% at 25°C), HC (90% at -5°C and 40% at 25°C) emissions and lower ozone HC reactivity have been observed and could all offer significant environmental air-quality benefits for LPG. Various autogas mixtures have been tested including 70/30, 30/70 and 49/30/21 (% mass propane / butane / propene). Results show that NOx emissions for this vehicle appear dependent on autogas composition. The two gas mixtures containing only 30% butane gave about 50% more NOx at +25°C than the 70% butane autogas mixture.
Technical Paper

Assessment of In-Use Solid Particle Number Measurement Systems against Laboratory Systems

2020-10-01
2020-01-5074
Euro VI regulations in Europe and its adaptors recently extended the regulation to include Particle Number (PN) for in-use conformity testing. However, the in-use PN Portable Emissions Measurement System (PEMS) is still evolving and has higher measurement uncertainty when compared against laboratory-grade PN systems. The PN systems for laboratory require a condensation particle counter (CPC). Thus, in this study, a CPC-based Horiba PN-PEMS was selected for performance evaluation against the laboratory-grade PN systems. This study was divided into four phases. The first two phases’ measurements were conducted from the Constant Volume Sampler (CVS) tunnel where the brake-specific particle number (BSPN) levels of 1010-12 and 1013 (#/bhp-h) were measured from the engines equipped with diesel particulate filter (DPF) and without DPF, respectively. In comparison against PN systems, PN-PEMS, on average, reported 14% lower BSPN from 82 various tests for the BSPN levels of 1010-11.
Technical Paper

Catalyst Improvements to Meet European Stage III and ULEV Emissions Criteria

1996-02-01
960799
This paper describes the use of advanced three-way catalysts to meet future European and California low emissions legislation. Firstly, it describes the performance of these catalysts tested using the European Stage II test cycle and contrasts their emissions performance over the proposed European Stage III test. The future legislation requires fast catalyst light-off for the low emissions standards to be achieved, therefore the performance of close-coupled catalysts was investigated. The close-coupled catalyst systems gave very low emissions. Space constraints often preclude the use of large volume close-coupled catalysts, and the combination of a small starter catalyst with an underfloor catalyst was tested. This gave performance levels better than the close-coupled configuration. The effect of reducing the underfloor catalyst volume is also described. The work was carried out on a 1.2 litre European Vehicle, the conclusions were verified on a 1.6 litre European vehicle.
Technical Paper

Catalyst-Based BS VI Stage 2 Emission Control Solutions for Light Duty Diesel

2019-01-09
2019-26-0141
Various types of after-treatment system for BS VI Stage 1 are being assessed for the Light Duty Diesel (LDD) segment. For BS VI Stage 2, Real Driving Emission (RDE) assessment will be newly introduced, which will require more robustness in emission control system capability. Although the detailed requirements for India BS VI stage 2 are still being discussed, a reasonable assumption is that similar systems to those being developed for Euro 6d, will work for India BS VI. This paper describes typical system designs for Euro 6d and also reveals newly developed SCRF® (Selective Catalytic Reduction Filter) based systems, which demonstrate excellent RDE emissions. In addition, newly developed Lean NOx Trap (NSC) coatings, which focus on low temperature NOx control used with SCRF® (NSC + SCRF®) also show excellent emission control capability as demonstrated in this case on the ARTEMIS Cycle. These systems have potential as promising LDD solutions for India BS VI stage 2.
Technical Paper

Celebrating the Exclaim!

2003-03-03
2003-01-1260
West Virginia University redesigned a 2002 Ford Explorer and created a diesel electric hybrid vehicle to satisfy the goals of the 2002 FutureTruck competition. These goals were to demonstrate a 25% improvement in fuel economy, to reduce greenhouse gas emissions, to achieve California ULEV emissions, to demonstrate 1/8-mile acceleration of 11.5 seconds or less, and to maintain vehicular comforts and performance. West Virginia University's 2002 hybrid sport utility vehicle (SUV), the Exclaim!, meets or exceeds these goals. Using a post-transmission parallel configuration, WVU integrated a 2.5L Detroit Diesel Corporation engine along with a Unique Mobility 75kW electric motor to replace the stock drivetrain. With an emphasis on maintaining performance, WVU strived to improve areas where SUVs have traditionally performed poorly: fuel economy and emissions. Using regenerative braking, fuel economy has been significantly improved.
X