Refine Your Search

Topic

Author

Search Results

Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

A Real-Time Capable and Modular Modeling Concept for Virtual SI Engine Development

2020-04-14
2020-01-0577
Spark Ignited (SI) combustions engines in combination with different degrees of hybridization are expected to play a major role in future vehicle propulsion. Due to the combustion principle and the related thermodynamic efficiency, it is especially challenging to meet future CO2 targets. The layout and optimization of the overall system requires novel methods in the development process which feature a seamless transition between real and virtual prototypes. Herein, engine models need to predict the entire engine operating range in steady-state and transient conditions and must respond to all relevant control inputs. In addition, the model must feature true real-time capability. This work presents a holistic and modular modeling framework, which considers all relevant processes in the complex chain of physical effects in SI combustion.
Technical Paper

A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock

2015-01-14
2015-26-0213
In the present work, a scalable simulation methodology is presented that enables the assessment of the impact of SI-engine cycle-to-cycle combustion variations on fuel consumption and hence CO2 emissions on three different levels of modeling depth: in-cylinder, steady-state engine and transient engine and vehicle simulation. On the detailed engine combustion chamber level, a 3D-CFD approach is used to study the impact of the turbulent in-cylinder flow on the cycle-resolved flame propagation characteristics. On engine level, cycle-to-cycle combustion variations are assessed regarding their impact on indicated mean effective pressure, aiming at estimating the possible fuel consumption savings when cyclic variations are minimized. Finally, on the vehicle system level, a combined real-time engine approach with crank-angle resolved cylinder is used to assess the potential fuel consumption savings for different vehicle drivecycle conditions.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Journal Article

A Simulation Study Assessing the Viability of Shifting the Location of Peak In-Cylinder Pressure in Motored Experiments

2020-09-27
2020-24-0009
Hybrid powertrains utilize an engine to benefit from the power density of the liquid fuel to extend the range of the vehicle. On the other hand, the electric machine is used for; transient operation, for very low loads and where legislation prohibits any gaseous and particulate emissions. Consequently, the operating points of an engine nowadays shifted from its conventional, broad range of speed and load to a narrower operating range of high thermal efficiency. This requires a departure from conventional engine architecture, meaning that analytical models used to predict the behavior of the engines early in the design cycle are no longer always applicable. Friction models are an example of sub-models which struggle with previously unexplored engine architectures. The “pressurized motored” method has proven to be a simple experimental setup which allows a robust FMEP determination against which engine friction simulation can be fine-tuned.
Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

An Integrated View on Automotive SPICE, Functional Safety and Cyber-Security

2020-04-14
2020-01-0145
The automotive domain has seen safety engineering at the forefront of the industry’s priorities for the last decade. Therefore, additional safety engineering efforts, design approaches, and well-established safety processes have been stipulated. Today many connected and automated vehicles are available and connectivity features and information sharing are increasingly used. This increases the attractiveness of an attack on vehicles and thus introduces new risks for vehicle cybersecurity. Thus, just as safety became a critical part of the development in the late 20th century, the automotive domain must now consider cybersecurity as an integral part of the development of modern vehicles. Aware of this fact, the automotive industry has, therefore, recently taken multiple efforts in designing and producing safe and secure connected and automated vehicles.
Technical Paper

Automated EMS Calibration using Objective Driveability Assessment and Computer Aided Optimization Methods

2002-03-04
2002-01-0849
Future demands regarding emissions, fuel consumption and driveability lead to complex engine and power train control systems. The calibration of the increasing number of free parameters in the ECU's contradicts the demand for reduced time in the power train development cycle. This paper will focus on the automatic, unmanned closed loop optimization of driveability quality on a high dynamic engine test bed. The collaboration of three advanced methods will be presented: Objective real time driveability assessment, to predict the expected feelings of the buyers of the car Automatic computer assisted variation of ECU parameters on the basis of statistical methods like design of experiments (DoE). Thus data are measured in an automated process allowing an optimization based on models (e.g. neural networks).
Technical Paper

Automotive Cabin Infotainment System Thermal Management

2015-04-14
2015-01-0328
The level of infotainment in today's vehicles and the customer expectation of the functionality imply a significant effort is required on thermal management of the systems, to guarantee their full operation under all operating conditions. The worst case thermal conditions the system will get exposed to are caused by solar loading on the cabin or heat up as a result of cabin heating. Simulation of a solar load driven case will be discussed in this paper. The long soak conditions during these tests result in the modelling requirement for long natural convection periods. This is creating a challenge for the conventional CFD simulations in turnaround time. New simulation methodology has resulted in significant speed up enabling these fully transient simulations in a reasonable turnaround time to enable programme support. A two phase approach to simulating this problem is proposed in this paper.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Journal Article

Comprehensive Array Measurements of In-Car Sound Field in Magnitude and Phase for Active Sound Generation and Noise Control

2014-06-30
2014-01-2046
When employing in-car active sound generation (ASG) and active noise cancellation (ANC), the accurate knowledge of the vehicle interior sound pressure distribution in magnitude as well as phase is paramount. Revisiting the ANC concept, relevant boundary conditions in spatial sound fields will be addressed. Moreover, within this study the controllability and observability requirements in case of ASG and ANC were examined in detail. This investigation focuses on sound pressure measurements using a 24 channel microphone array at different heights near the head of the driver. A shaker at the firewall and four loudspeakers of an ordinary in-car sound system have been investigated in order to compare their sound fields. Measurements have been done for different numbers of passengers, with and without a dummy head and real person on the driver seat. Transfer functions have been determined with a log-swept sine technique.
Technical Paper

Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems

2016-04-05
2016-01-0558
The present work introduces an innovative mechanistically based 0D spray model which is coupled to a combustion model on the basis of an advanced mixture controlled combustion approach. The model calculates the rate of heat release based on the injection rate profile and the in-cylinder state. The air/fuel distribution in the spray is predicted based on momentum conservation by applying first principles. On the basis of the 2-zone cylinder framework, NOx emissions are calculated by the Zeldovich mechanism. The combustion and emission models are calibrated and validated with a series of dedicated test bed data specifically revealing its capability of describing the impact of variations of EGR, injection timing, and injection pressure. A model based optimization is carried out, aiming at an optimum trade-off between fuel consumption and engine-out emissions. The findings serve to estimate an economic optimum point in the NOx/BSFC trade-off.
Technical Paper

Crank-Angle Resolved Real-Time Capable Engine and Vehicle Simulation - Fuel Consumption and Driving Performance

2010-04-12
2010-01-0784
The present work introduces a fully integrated real-time (RT) capable engine and vehicle model. The gas path and drive line are described in the time domain of seconds whereas the reciprocating characteristics of an IC engine are reflected by a crank angle resolved cylinder model. The RT engine model is derived from a high fidelity 1D cycle simulation and gas exchange model to support an efficient and consistent transfer of model data like geometries, heat transfer or combustion. The workflow of model calibration and application is outlined and base ECU functionalities for boost pressure, EGR, smoke and idle speed control are applied for transient engine operation. Steady state results of the RT engine model are compared to experimental data and 1D high fidelity simulations for 19 different engine load points. In addition an NEDC (New European Drive Cycle) is simulated and results are evaluated with data from chassis dynamometer measurements.
Journal Article

Definition of Gearshift Pattern: Innovative Optimization Procedures Using System Simulation

2011-04-12
2011-01-0395
Today's powertrains are becoming more and more complex due to the increasing number of gear box types requiring gearshift patterns like conventional (equipped with GSI) and automatic-manual transmissions (AT, AMT), double clutch and continuous variable transmissions (DCT, CVT). This increasing variety of gear boxes requires a higher effort for the overall optimization of the powertrain. At the same time, it is necessary to assess the impact of different powertrains and control strategies on CO₂ emissions very early in the development process. The optimization of Gear Shift Patterns (G.S.P.) has to fulfill multiple constraints in terms of objective customers' requirements, like driveability, NVH, performance, emissions and fuel consumption. For these reasons, RENAULT and AVL entered an engineering collaboration in order to develop a dedicated simulation tool: CRUISE GSP.
Journal Article

Development and Validation of a Quasi-Dimensional Dual Fuel (Diesel – Natural Gas) Combustion Model

2017-03-28
2017-01-0517
This paper presents a newly developed quasi-dimensional multi-zone dual fuel combustion model, which has been integrated within the commercial engine system simulation framework. Model is based on the modified Multi-Zone Combustion Model and Fractal Combustion Model. Modified Multi-Zone Combustion Model handles the part of the combustion process that is governed by the mixing-controlled combustion, while the modified Fractal Combustion Model handles the part that is governed by the flame propagation through the combustion chamber. The developed quasi-dimensional dual fuel combustion model features phenomenological description of spray processes, i.e. liquid spray break-up, fresh charge entrainment, droplet heat-up and evaporation process. In order to capture the chemical effects on the ignition delay, special ignition delay table has been made.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Journal Article

Development of a High Performance Natural Gas Engine with Direct Gas Injection and Variable Valve Actuation

2017-09-04
2017-24-0152
Natural gas is a promising alternative fuel for internal combustion engine application due to its low carbon content and high knock resistance. Performance of natural gas engines is further improved if direct injection, high turbocharger boost level, and variable valve actuation (VVA) are adopted. Also, relevant efficiency benefits can be obtained through downsizing. However, mixture quality resulting from direct gas injection has proven to be problematic. This work aims at developing a mono-fuel small-displacement turbocharged compressed natural gas engine with side-mounted direct injector and advanced VVA system. An injector configuration was designed in order to enhance the overall engine tumble and thus overcome low penetration.
Technical Paper

Drive Cycle Simulation of A Tiered Cooling Pack Using Non-Uniform Boundary Conditions

2014-04-01
2014-01-0654
In a tiered cooling pack, the airflow through the individual heat exchangers is determined by the package and aperture lay out. Each heat exchanger rejects heat as a function of the internal coolant flows, the cooling airflow and the air temperature. In a typical automotive cooling pack, the cooling airflow will be non-uniform in velocity and temperature due to fans, aperture geometry, exterior flows, heat exchangers and recirculation. In a drive cycle, these boundary conditions will change with vehicle operating conditions like vehicle speed, engine speed, ambient temperature, and altitude. These non-uniform conditions on the cooling pack can lead to significant errors when uniform boundary conditions are assumed in a transient simulation. This error is commonly corrected using vehicle test data. A predictive approach, which eliminates the need for correlation vehicle testing, is presented.
Journal Article

EU6c Particle Number on a Full Size SUV - Engine Out or GPF?

2014-10-13
2014-01-2848
This paper describes the findings of a design, simulation and test study into how to reduce particulate number (Pn) emissions in order to meet EU6c legislative limits. The objective of the study was to evaluate the Pn potential of a modern 6-cylinder engine with respect to hardware and calibration when fitted to a full size SUV. Having understood this capability, to redesign the combustion system and optimise the calibration in order to meet an engineering target value of 3×1011 Pn #/km using the NEDC drive cycle. The design and simulation tasks were conducted by JLR with support from AVL. The calibration and all of the vehicle testing was conducted by AVL, in Graz. Extensive design and CFD work was conducted to refine the inlet port, piston crown and injector spray pattern in order to reduce surface wetting and improve air to fuel mixing homogeneity. The design and CFD steps are detailed along with the results compared to target.
Technical Paper

Engine Air Intake Thermal Modelling in Full Vehicle Underhood Environment

2013-04-08
2013-01-0861
The current trend of highly boosted petrol engines is demanding significant engineering effort on the air intake system development. The package of the air intake system is done early in the programme phase and the main engineering effort have historically been around achieving the system pressure drop targets. The thermal impact of the package is assessed during the vehicle testing phase. This can lead to significant design changes in order to maintain engine performance under all operating conditions late on in the development, driving up cost and programme delays. The highly boosted engine performance is very sensitive to heat pick up of the intake air and therefore requires an optimised system. To be able to support the engine intake design at the early program phases with thermal input, an analytical method has been developed.
X