Refine Your Search

Topic

Search Results

Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Auxiliary Drive Control Strategy of Hydraulic Hub-Motor Auxiliary System for Heavy Truck

2016-09-27
2016-01-8113
To improve traditional heavy commercial vehicles performance, this paper introduces a novel hydraulic hub-motor auxiliary system, which could achieve auxiliary driving and auxiliary braking function. Firstly, the system configuration and operation modes are described. In order to achieve coordinating control and distribution of the engine power between mechanical and hydraulic paths, the paper proposes an optimal algorithm based on enhance of vehicle slip efficiency and the results show that displacement of hydraulic variable pump relates with the transmission gear ratio. And then the hydraulic pump displacement controller is designed, in which the feedforward and feedback strategy is adopted. Considering the characteristics of hydraulic hub-motor auxiliary system, a layered auxiliary drive control strategy is proposed in the paper, which includes signal layers, core control layers and executive layers.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Development of Battery/Supercapacitor Hybrid Energy Management System for Electric Vehicles Based on a Power Sharing Strategy Using Terrain Information

2016-04-05
2016-01-1242
Since road electric vehicles typically require a significantly variable and random load power demand in response to traffic conditions, such as frequent sequences of acceleration and deceleration and uphill followed by downhill runs. In this context, the energy management system of electric vehicle must ensure an effective power distribution between battery and supercapacitor to satisfy load demand. In this paper, the power management control strategy of hybrid energy storage system is developed by introducing terrain information to optimize system efficiency and battery lifetime. In this presented research, we aim at developing a power management control strategy considering the influence of the terrain information on system efficiency and battery lifetime.
Technical Paper

Electrochemical Characteristics of Cubic ZnFe2O4 Anode for Li-Ion Batteries at Low Temperature

2016-04-05
2016-01-1215
The poor low-temperature behavior of Li-ion batteries has limited its application in the field of electric vehicles and hybrid electric vehicles. Many previous studies concentrate on developing new type of electrolyte to solve this problem. However, according to recent research, the key limitation at low temperature is the low diffusivity of lithium ion in the anode electrodes. Hence, it is potential to study anode materials to improve low-temperature behavior of LIBs. ZnFe2O4 with higher theoretical capacity is low toxicity and abundance, contributing to its commercial application. Different ZnFe2O4 crystalline shapes have different particle sizes. Among them, the cubic ZnFe2O4 with smaller particle size will increase its own electronic and ionic conductance at lower temperature. In this regard, we evaluated low-temperature performance of LIBs with ZnFe2O4 cubes as anode materials at -25°C.
Technical Paper

Fuzzy Supervisory Based Variable Frequency Control Strategy for Active Battery/Supercapacitor Combination in Electric Vehicles

2016-04-05
2016-01-1203
This paper describes a novel power management control strategy of battery and supercapacitor hybrid energy storage system to improve system efficiency and battery lifetime. In the presented research, the high and low frequency power demand in the load is separated by a Haar wavelet transform algorithm to overcome the problem of battery overload work and associated degeneration in battery lifetime resulting from an ineffective distribution between battery and supercapacitor. The purpose of frequency distribution is that the supercapacitor is used to share high frequency power components of load power demand to smooth the power demand applied to battery. However, the sole frequency control often fails to realize the optimal utilization of supercapacitor because of the uncertain variation in the driving cycle.
Technical Paper

Intelligent Deceleration Energy-Saving Control Strategy for Electric Vehicle

2021-04-06
2021-01-0123
In order to improve the vehicle economy of electric vehicles, this paper first analyzes the energy-saving mechanism of electric vehicles. Taking the energy consumption of the deceleration process as a starting point, this paper deeply analyzes the energy consumption of the deceleration process under several different control modes by the test data, so as to obtain two principles that should be followed in energy-saving control strategy. Then, an intelligent deceleration energy-saving control strategy by getting the forward vehicle information is developed. The overall architecture of the control strategy consists of three parts: information processing, target calculation and torque control. The first part is mainly to obtain the forward vehicle information from the perception systems, and the user's habits information from big data, and this information is processed for the next part.
Technical Paper

Lightweight Design of CFRP Automobile Tailgate Based on Multi-Step Optimization

2019-04-02
2019-01-1103
As a critical part of auto-body, the design of tailgate not only affects the beauty, usability and safety of automobile, but also involves more and more issues about environmental protection and energy saving. Hence, it is of vital importance to investigate lightweight of tailgate. This paper mainly focuses on lightweight design of CFRP tailgate based on conventional SUV metal tailgate, which can be realized under the condition of meeting requirements of stiffness, modal and manufacturing with the adoption of multi-step optimization method. To start with, finite element (FE) model of metal tailgate is established. Meanwhile, the stiffness and modal analyses, including bending stiffness, torsional stiffness, lateral stiffness, vertical stiffness and free modal are set up. Then, the structural performances of metal tailgate are analyzed, and the topology optimization of CFRP tailgate is performed.
Technical Paper

Objective Evaluation Model of Automatic Transmission Shift Quality Based on Multi-Hierarchical Grey Relational Analysis

2018-04-03
2018-01-0405
Improvement of shift quality evaluation has become more prevalent over the past few years in the development of automatic transmission electronic control system. For the problems of the subjective shift quality evaluation that subjectivity is too strong, the standard cannot be unified and the definition of the objective evaluation index is not clear at present, this paper studies on the methods of objective evaluation of shift quality based on the multi-hierarchical grey relational analysis. Firstly, objective evaluation index system is constructed based on physical quantities, such as the engine speed, the longitudinal acceleration of the vehicle and so on, which broadens the scope of the traditional objective evaluation index further.
Technical Paper

Overtaking or Merging? Eco-Routing Decision and Speed Trajectory with Full Terrain Information

2018-04-03
2018-01-0038
With vehicle platooning becoming an important research field in recent years, it is now imperative to introduce platoons as part of the dynamic environment, considering overtaking and merging possibilities. This article studies optimal speed trajectories and longitudinal control with optimized energy efficiency for an autonomous vehicle with several preceding platoons and full terrain information. It aims at improving the energy efficiency of vehicles with Advanced Driver Assistance Systems (ADAS). A forward discrete dynamic programming (DDP) algorithm with distance as the discretization basis is used to derive speed trajectories in the trade-off between air drag reduction and energy saved by utilizing the road slope information. The problem is decomposed into decisions whether to overtake or to merge into the nearest platoon with the assumption of sufficient distance among platoons.
Technical Paper

Performance Characteristics Analysis of Variable Expansion Ratio Expander Based on Organic Rankine Cycle for Automobile Waste Heat Recovery

2017-10-08
2017-01-2183
A reciprocating piston expander model based on organic Rankine cycle (ORC) is built for engine waste heat recovery. The expander characterizes by variable expansion ratio through adjusting working fluid injection timing. This paper investigates the effect of working fluid evaporating pressure, expansion ratio and clearance volume on the expander performance which mainly includes output power, equivalent recovery efficiency, total output power, expander efficiency, and the weighted efficiency of the expander, weighted heat recovery efficiency of the expander. The results demonstrate that the total output power and the equivalent heat recovery efficiency increase with working fluid evaporating pressure under overall operating conditions, while the increment is negligible. The expander reaches maximum total output power up to 83.4kW under c100 engine condition and 1.1MPa working fluid evaporating pressure within the research operating conditions.
Technical Paper

Personalized Eco-Driving for Intelligent Electric Vehicles

2018-08-07
2018-01-1625
Minimum energy consumption with maximum comfort driving experience define the ideal human mobility. Recent technological advances in most Advanced Driver Assistance Systems (ADAS) on electric vehicles not only present a significant opportunity for automated eco-driving but also enhance the safety and comfort level. Understanding driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system comfort. This research focuses on the personalized and green adaptive cruise control for intelligent electric vehicle, which is also known to be MyEco-ACC. MyEco-ACC is based on the optimization of regenerative braking and typical driving styles. Firstly, a driving style model is abstracted as a Hammerstein model and its key parameters vary with different driving styles. Secondly, the regenerative braking system characteristics for the electric vehicle equipped with 4-wheel hub motors are analyzed and braking force distribution strategy is designed.
Journal Article

Research on Multi-Vehicle Coordinated Lane Change of Connected and Automated Vehicles on the Highway

2019-04-02
2019-01-0678
With the rapid development of modern economy and society, traffic congestion has become an increasingly serious problem. Vehicle cooperative driving can alleviate traffic congestion and improve road traffic capacity. Compare with vehicle separate control, cooperative driving combines various vehicle systems, and highly integrates information on obstacle location, vehicle status and driving intention. Then the controller uniformly issues instructions to ensure the orderly driving of the platoon. In the cooperative driving platoon, the displacement difference and the speed difference between vehicles have a certain relationship, which reduces the possibility of traffic accidents and then improves the safety of driving. In the process of cooperative driving, if there are multiple vehicles whose speeds don’t meet the current lane requirements, or if there are obstacles ahead, multi-vehicle lane change measures must be taken.
X