Refine Your Search

Topic

Search Results

Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine

2004-10-25
2004-01-2901
This paper presents experimental studies of particulate emissions in a small SI engine fueled with LPG and gasoline fuels. A single cylinder, four-stroke, water-cooled, 125cc EFI engine with gasoline fuel is used as the baseline engine. Characteristics of the particulate emissions of the two fuels are compared. Test results show that: there are great quantities of particulate emissions for both fuels, but the total numbers of particulate emissions for the two fuels are generally in the same level. The distribution of the particulate sizes is in bimodal type for the gasoline, but for the LPG its first peak is not markedly in some conditions. The particulate sizes of the second peak for the two fuels appear at about the same size. At middle loads and 3000r/min, the particulate emissions for both of the two fuels are the greatest.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Control Optimization of a Charge Sustaining Hybrid Powertrain for Motorsports

2018-04-03
2018-01-0416
The automotive industry is aggressively pursuing fuel efficiency improvements through hybridization of production vehicles, and there are an increasing number of racing series adopting similar architectures to maintain relevance with current passenger car trends. Hybrid powertrains offer both performance and fuel economy benefits in a motorsport setting, but they greatly increase control complexity and add additional degrees of freedom to the design optimization process. The increased complexity creates opportunity for performance gains, but simulation based tools are necessary since hybrid powertrain design and control strategies are closely coupled and their optimal interactions are not straightforward to predict. One optimization-related advantage that motorsports applications have over production vehicles is that the power demand of circuit racing has strong repeatability due to the nature of the track and the professional skill-level of the driver.
Technical Paper

Cooperative Estimation of Road Grade Based on Multidata Fusion for Vehicle Platoon with Optimal Energy Consumption

2020-04-14
2020-01-0586
The platooning of connected automated vehicles (CAV) possesses the significant potential of reducing energy consumption in the Intelligent Transportation System (ITS). Moreover, with the rapid development of eco-driving technology, vehicle platooning can further enhance the fuel efficiency by optimizing the efficiency of the powertrain. Since road grade is a main factor that affects the energy consumption of a vehicle, the estimation of the road grade with high accuracy is the key factor for a connected vehicle platoon to optimize energy consumption using vehicle-to-vehicle (V2V) communication. Commonly, the road grade is quantified by single consumer grade global positioning system (GPS) with the geodetic height data which is rough and in the meter-level, increasing the difficulty of precisely estimating the road grade.
Technical Paper

Development and Validation of New Control Algorithm for Parallel Hybrid Electric Transit Bus

2006-10-31
2006-01-3571
The new control algorithm for parallel hybrid electric vehicle is presented systematically, in which engine operation points are limited within higher efficient area by the control algorithm and the state of charge (SOC) is limited in a range in order to enhance the batteries' charging and discharging efficiency. In order to determine the ideal operating point of the vehicle's engine, the control strategy uses a lookup table to determine the torque output of the engine. The off-line simulation model of parallel HEV power train is developed which includes the control system and controlled objective (such as engine, electric motor, battery pack and so on). The results show that the control algorithm can effectively limite engine and battery operation points and much more fuel economy can be achieved than that of conventional one.
Technical Paper

Development of Battery/Supercapacitor Hybrid Energy Management System for Electric Vehicles Based on a Power Sharing Strategy Using Terrain Information

2016-04-05
2016-01-1242
Since road electric vehicles typically require a significantly variable and random load power demand in response to traffic conditions, such as frequent sequences of acceleration and deceleration and uphill followed by downhill runs. In this context, the energy management system of electric vehicle must ensure an effective power distribution between battery and supercapacitor to satisfy load demand. In this paper, the power management control strategy of hybrid energy storage system is developed by introducing terrain information to optimize system efficiency and battery lifetime. In this presented research, we aim at developing a power management control strategy considering the influence of the terrain information on system efficiency and battery lifetime.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

2003-10-27
2003-01-3260
This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.
Technical Paper

EGR Response in a Turbo-charged and After-cooled DI Diesel Engine and Its Effects on Smoke Opacity

2008-06-23
2008-01-1677
Three thermo-wires with amplifying circuits have been developed to measure the time-resolved concentration of the exhaust gas recirculated into the intake manifold by a rotary valve-based exhaust gas recirculation (EGR) system of a diesel engine. Good agreement was found between the EGR rates measured by the temperature based system and a conventional CO2 tracing system. The developed EGR measuring system was used to investigate the EGR transient response in a turbo-charged and after-cooled diesel engine with a real-time measure and control system. The EGR response under EGR valve step change and engine transient operating conditions are discussed. At first, the engine was running under a certain steady condition with zero recirculated exhaust gas, then the rotary valve opened to maximum within 0.1s to demonstrate the EGR step change behavior. EGR rate and air intake stabilized in 0.5s.
Technical Paper

Effects of Environmental Parameters on Real-World NOx Emissions and Fuel Consumption for Heavy-Duty Diesel Trucks Using an OBD Approach

2018-09-10
2018-01-1817
OBD (On-Board Diagnostic) test system is applied to research influences of environmental parameters (altitude and environment temperature) on real-world NOx emission and fuel consumption for heavy-duty diesel trucks in this paper. The research results indicate that altitude and environment temperature have great influence on NOx emission rate and fuel consumption. High altitude in range of 3000~4000 m results in NOx emission rate is lower than low and moderate temperature because of air intake amount decreasing. However the fuel consumption rate is higher than lower altitude because altitude influences real-time changes of air inflow and combustion conditions in the cylinder of the engine. NOx emission rate and fuel consumption is more stable at different vehicle speed, VSP and RPM at high altitude, and NOx emission rate fluctuate dramatically at low and moderate altitude. The fuel consumption rate is higher at 10~20 °C than that at lower and higher temperature.
Technical Paper

Effects of Fuel Injection Characteristics on Heat Release and Emissions in a DI Diesel Engine Operated on DME

2001-09-24
2001-01-3634
In this study, an experimental investigation was conducted using a direct injection single-cylinder diesel engine equipped with a test common rail fuel injection system to clarify how dimethyl ether (DME) injection characteristics affect the heat release and exhaust emissions. For that purpose the common rail fuel injection system (injection pressure: 15 MPa) and injection nozzle (0.55 × 5-holes, 0.70 × 3-holes, same total holes area) have been used for the test. First, to characterize the effect of DME physical properties on the macroscopic spray behavior: injection quantity, injection rate, penetration, cone angle, volume were measured using high-pressure injection chamber (pressure: 4MPa). In order to clarify effects of the injection process on HC, CO, and NOx emissions, as well as the rate of heat release were investigated by single-cylinder engine test. The effects of the injection rate and swirl ratio on exhaust emissions and heat release were also investigated.
Technical Paper

Electrochemical Characteristics of Cubic ZnFe2O4 Anode for Li-Ion Batteries at Low Temperature

2016-04-05
2016-01-1215
The poor low-temperature behavior of Li-ion batteries has limited its application in the field of electric vehicles and hybrid electric vehicles. Many previous studies concentrate on developing new type of electrolyte to solve this problem. However, according to recent research, the key limitation at low temperature is the low diffusivity of lithium ion in the anode electrodes. Hence, it is potential to study anode materials to improve low-temperature behavior of LIBs. ZnFe2O4 with higher theoretical capacity is low toxicity and abundance, contributing to its commercial application. Different ZnFe2O4 crystalline shapes have different particle sizes. Among them, the cubic ZnFe2O4 with smaller particle size will increase its own electronic and ionic conductance at lower temperature. In this regard, we evaluated low-temperature performance of LIBs with ZnFe2O4 cubes as anode materials at -25°C.
Technical Paper

Fuzzy Supervisory Based Variable Frequency Control Strategy for Active Battery/Supercapacitor Combination in Electric Vehicles

2016-04-05
2016-01-1203
This paper describes a novel power management control strategy of battery and supercapacitor hybrid energy storage system to improve system efficiency and battery lifetime. In the presented research, the high and low frequency power demand in the load is separated by a Haar wavelet transform algorithm to overcome the problem of battery overload work and associated degeneration in battery lifetime resulting from an ineffective distribution between battery and supercapacitor. The purpose of frequency distribution is that the supercapacitor is used to share high frequency power components of load power demand to smooth the power demand applied to battery. However, the sole frequency control often fails to realize the optimal utilization of supercapacitor because of the uncertain variation in the driving cycle.
Technical Paper

Impact Theory Based Total Cylinder Sampling System and its Application

2008-06-23
2008-01-1795
A novel non-destroy repeatable-use impact theory based total cylinder sampling system has been established. This system is mainly composed of a knocking body and a sampling valve. The knocking body impacts the sampling valve with certain velocity resulting in huge force to open the sampling valve and most of the in-cylinder gas has been dumped to one sampling bag for after-treatment. The feasibility and sampling response characteristics of this impact theory based total cylinder sampling system were investigated by engine bench testing. Within 0 to 35°CA ATDC (Crank Angle After Top Dead Center) sample timing 50 percent to 80 percent of in-cylinder mass would be sampled, which was a little less compared with the traditional system. The half decay period of pressure drop was 10 to 20 degrees crank angle within 0 to 60°CA ATDC sample timing, which was about 2-3 times of the traditional system.
Technical Paper

Intelligent Deceleration Energy-Saving Control Strategy for Electric Vehicle

2021-04-06
2021-01-0123
In order to improve the vehicle economy of electric vehicles, this paper first analyzes the energy-saving mechanism of electric vehicles. Taking the energy consumption of the deceleration process as a starting point, this paper deeply analyzes the energy consumption of the deceleration process under several different control modes by the test data, so as to obtain two principles that should be followed in energy-saving control strategy. Then, an intelligent deceleration energy-saving control strategy by getting the forward vehicle information is developed. The overall architecture of the control strategy consists of three parts: information processing, target calculation and torque control. The first part is mainly to obtain the forward vehicle information from the perception systems, and the user's habits information from big data, and this information is processed for the next part.
Technical Paper

Lightweight Design of CFRP Automobile Tailgate Based on Multi-Step Optimization

2019-04-02
2019-01-1103
As a critical part of auto-body, the design of tailgate not only affects the beauty, usability and safety of automobile, but also involves more and more issues about environmental protection and energy saving. Hence, it is of vital importance to investigate lightweight of tailgate. This paper mainly focuses on lightweight design of CFRP tailgate based on conventional SUV metal tailgate, which can be realized under the condition of meeting requirements of stiffness, modal and manufacturing with the adoption of multi-step optimization method. To start with, finite element (FE) model of metal tailgate is established. Meanwhile, the stiffness and modal analyses, including bending stiffness, torsional stiffness, lateral stiffness, vertical stiffness and free modal are set up. Then, the structural performances of metal tailgate are analyzed, and the topology optimization of CFRP tailgate is performed.
X