Refine Your Search

Topic

Search Results

Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

A Study of Calculation Method of Wheel Speed and Wheel Angular Acceleration Based on dSPACE Rapid Control Prototyping in Modern Automotive Control Systems

2006-10-31
2006-01-3547
One of the key technologies of automotive active safety systems is to calculate the wheel speed and wheel angular acceleration or deceleration. Obtaining an accurate control quantity is the prerequisite for active safety systems no matter what control logics are used to realize the control function. This paper puts forward a new wheel speed processing algorithm. This method was simulated in MATLAB \ Simulink. Then it was tested in a certain type of vehicle of FAW by applying dSPACE RCP. It proves that this algorithm assures the precision at high and low speed and the real-time performance at low speed.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

An Experimental Investigation of the Combustion Characteristics of Acetone-Butanol-Ethanol-Diesel Blends with Different ABE Component Ratios in a Constant Volume Chamber

2014-04-01
2014-01-1452
Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuel which typically emit less pollutants compared to conventional diesel, but also lowers the cost of fuel recovery for each individual component during the fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly. ABE fuels with different component ratio, (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %), were blended with diesel and tested in a constant volume chamber.
Technical Paper

An Integrated Method for Evaluation of Seat Comfort Based on Virtual Simulation of the Interface Pressures of Driver with Different Body Sizes

2017-03-28
2017-01-0406
This paper presents an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For simulation of the body-seat interaction and for calculation of the interface pressure, besides body dimensions and material characteristics an important aspect is the posture and position of the driver body with respect to seat. In addition, to ensure accommodation of the results to the target population usually several individuals are simulated, whose body anthropometries cover the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques are usually adopted to generate the individuals and to predict the detailed body dimensions. In biomechanical modeling of human body and seat, the correct element type, the rational settings of the contacts between different parts, the correct exertion of the loads to the calculation field, etc., are also crucial.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Application Study of Solar Energy and Heat Management System Utilizing Phase Change Materials in Parking Facilities

2024-04-09
2024-01-2451
Ambient temperature is a very sensitive use condition for electric vehicles (EVs), so it is imperative to ensure the maintenance of suitable temperature. This is particularly important in regions characterized by prolonged exposure to unfavorable temperature conditions. In such cases, it becomes necessary to implement insulation measures within parking facilities and allocate energy resources to sustain a desired temperature level. Solar energy is a renewable and environmentally friendly source of energy that is widely available. However, the effectiveness of utilizing solar energy is influenced by various factors, such as the time of day and weather conditions. The use of phase change material (PCM) in a latent heat energy storage (LHES) system has gained significant attention in this field. In contrast to single-phase energy storage materials, PCM offer a more effective heat storage capacity.
Technical Paper

Assessment Approaches of Automobile Frontal Crash Pulse

2018-07-09
2018-01-5024
This article presents three assessment approaches of automobile frontal crash pulse by using data from the National Highway Traffic Safety Administration (NHTSA) database (56 km/h frontal crash tests). A direct relationship between structural characteristics and automobile safety is established in the study. In the first approach, the crash pulse criterion is improved in the form of a spider diagram based on the star rating. In the second approach, the crash pulse comprehensive evaluation index (PI) is built by weighting function and correlation analysis between pulse parameters and occupant injury risk indexes. In the final approach, a prediction model for major occupant injury risks and indexes which can be regard as an additional evaluation method of crash pulse quality is built by the multiple linear regression method.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Characteristics of Particulate Emissions Fueled with LPG and Gasoline in a Small SI Engine

2004-10-25
2004-01-2901
This paper presents experimental studies of particulate emissions in a small SI engine fueled with LPG and gasoline fuels. A single cylinder, four-stroke, water-cooled, 125cc EFI engine with gasoline fuel is used as the baseline engine. Characteristics of the particulate emissions of the two fuels are compared. Test results show that: there are great quantities of particulate emissions for both fuels, but the total numbers of particulate emissions for the two fuels are generally in the same level. The distribution of the particulate sizes is in bimodal type for the gasoline, but for the LPG its first peak is not markedly in some conditions. The particulate sizes of the second peak for the two fuels appear at about the same size. At middle loads and 3000r/min, the particulate emissions for both of the two fuels are the greatest.
Technical Paper

Co-Simulation Research of Integrated Electro-Hydraulic Braking System

2016-04-05
2016-01-1647
A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively. According to the dynamic characteristic curves of system, the effects of different structural and control parameters on braking performance are analyzed.
Technical Paper

Combustion and Emissions Characteristics of a Small Spark-Ignited LPG Engine

2002-05-06
2002-01-1738
This paper presents an experimental study of the emission characteristics of a small Spark-Ignited, LPG engine. A single cylinder, four-stroke, water-cooled, 125cc SI engine for motorcycle is modified for using LPG fuel. The power output of LPG is above 95% power output of gasoline. The emission characteristics of LPG are compared with the gasoline. The test result shows that LPG for small SI engine will help to reduce the emission level of motorcycles. The HC and CO emission level can be reduced greatly, but NOx emissions are increased. The emission of motorcycle using LPG shows the potential to meet the more strict regulation.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Development of a Control Strategy and HIL Validation of Electronic Braking System for Commercial Vehicle

2014-04-01
2014-01-0076
This article focuses on the research of control algorithm and control logic for the pneumatic EBS (Electronic Braking System) of commercial vehicle. An overall technical program was proposed which develops conventional braking and emergency braking for commercial vehicle EBS. According to the overall scheme, the methods of vehicle state estimation and driver's braking intention were determined, modeling and simulation for key components of commercial vehicle EBS were then carried out. This lead to the development of deceleration control, braking force distribution, brake assist and ABS control. Simulation models for key components of EBS and control strategy were validated through hardware-in-the-loop simulation tests. Simulation results show that the control strategy improves vehicle braking stability and vehicle active safety.
Technical Paper

Development of a Gas-Phase LPG Injection System for a Small SI Engine

2003-10-27
2003-01-3260
This paper presents the development of an electronic control LPG gas injection system and its application in a small SI engine. The tests results show that the developed LPG gas injection system can meet the needs for the goal of high engine power output and low exhaust emissions based on the engine bench tests. With the LPG electronic gas injection system, the air-fuel ratio can be optimized based on the requirements and CO and NOx emission levels are decreased significantly compared with the LPG mechanical mixer fuel supply system, based on the same HC emission levels. With the new gas phase LPG electronic control injection system, the HC emission level is controlled below the 300 ppm under most engine conditions and under 200 ppm when the engine speed is over 3000 r/min. The NOx emission level is under 2600 ppm in the whole range of engine operation conditions and is decreased by 2000 ppm compared with the LPG mechanical mixer system.
Technical Paper

EGR Response in a Turbo-charged and After-cooled DI Diesel Engine and Its Effects on Smoke Opacity

2008-06-23
2008-01-1677
Three thermo-wires with amplifying circuits have been developed to measure the time-resolved concentration of the exhaust gas recirculated into the intake manifold by a rotary valve-based exhaust gas recirculation (EGR) system of a diesel engine. Good agreement was found between the EGR rates measured by the temperature based system and a conventional CO2 tracing system. The developed EGR measuring system was used to investigate the EGR transient response in a turbo-charged and after-cooled diesel engine with a real-time measure and control system. The EGR response under EGR valve step change and engine transient operating conditions are discussed. At first, the engine was running under a certain steady condition with zero recirculated exhaust gas, then the rotary valve opened to maximum within 0.1s to demonstrate the EGR step change behavior. EGR rate and air intake stabilized in 0.5s.
X