Refine Your Search

Topic

Search Results

Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Study of Calculation Method of Wheel Speed and Wheel Angular Acceleration Based on dSPACE Rapid Control Prototyping in Modern Automotive Control Systems

2006-10-31
2006-01-3547
One of the key technologies of automotive active safety systems is to calculate the wheel speed and wheel angular acceleration or deceleration. Obtaining an accurate control quantity is the prerequisite for active safety systems no matter what control logics are used to realize the control function. This paper puts forward a new wheel speed processing algorithm. This method was simulated in MATLAB \ Simulink. Then it was tested in a certain type of vehicle of FAW by applying dSPACE RCP. It proves that this algorithm assures the precision at high and low speed and the real-time performance at low speed.
Technical Paper

Analysis of Active Collision Avoidance Performance Based on Cooperative Regenerative Auxiliary Braking System

2019-11-04
2019-01-5027
Active collision avoidance can assist drivers to avoid longitudinal collision through active brake. Regenerative braking can improve the driving range and braking response speed. At this stage, conventional hydraulic braking system limits the implements of above technologies because of its poor performance of response speed and coordinated control. While the brake-by-wire system is a better actuator that can fulfill requirements of automotive electric and intelligent development due to its rapid response and flexible adjustment. However, the system control algorithm becomes more complicated with introduction of regenerative braking and active collision avoidance function, which is also the main problem solved in this paper.
Technical Paper

Analysis of Causes of Rear-end Conflicts Using Naturalistic Driving Data Collected by Video Drive Recorders

2008-04-14
2008-01-0522
Studying traffic accidents by using naturalistic driving data has become increasingly appealing for its potential benefits in improving road safety. This paper presents findings from a field test which has been conducted on 50 taxis in the urban areas of Beijing for 10 months using Video Drive Recorders (VDRs). The VDR used in this study could record the information of vehicle front view video, vehicle states, as well as driver operations immediately before and after an event. The drivers were given no specific instructions during the test, and the instrumentation for data collection was unobtrusive. Important safety-relevant parameters, such as vehicle speed, pre-event maneuver, time headway, time-to-collision, and driver reaction time, were calculated with precision. Based on these parameters, an analysis into features and causes of rear-end conflicts is performed.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Autonomous Emergency Braking Control Based on Hierarchical Strategy Using Integrated-Electro-Hydraulic Brake System

2017-09-23
2017-01-1964
Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
Technical Paper

Biomechanical Response of the Bovine Pia-Arachnoid Complex to Normal Traction Loading at Varying Strain Rates

2007-10-29
2007-22-0004
The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. The mechanical properties of the bovine PAC under tensile loading have been characterized previously. However, the transverse properties of this structure, such as shear and normal traction which are equally important to understanding the skull/brain interaction under traumatic loading, have not been investigated. These material properties are essential information needed to adequately define the material model of the PAC in a finite element (FE) model of human brain. The purpose of this study was to determine, experimentally, the material properties of the PAC under normal traction loading. PAC specimens were obtained from freshly slaughtered bovine subjects from various locations.
Technical Paper

Co-Simulation Research of Integrated Electro-Hydraulic Braking System

2016-04-05
2016-01-1647
A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively. According to the dynamic characteristic curves of system, the effects of different structural and control parameters on braking performance are analyzed.
Technical Paper

Control Synthesis for Distributed Vehicle Platoon Under Different Topological Communication Structures

2019-04-02
2019-01-0494
The wireless inter-vehicle communication provide a manner to achieve multi-vehicle cooperative driving, and the platoon of automotive vehicle can significantly improve traffic efficiency and ensure traffic safety. Previous researches mostly focus on the state of the proceeding vehicle, and transmit information from self to the succeeding vehicle. Nevertheless, this structure possesses high requirements for controller design and shows poor effect in system stability. In this paper, the state of vehicles is not only related to the information of neighbor vehicles, while V2V communication transmit information over a wide range of area. To begin with, the node dynamic model of vehicle is described by linear integrator with inertia delay and the space control strategy is proposed with different topological communication structures as BF, LBF, PBF, etc.
Technical Paper

Decision Making and Trajectory Planning for Lane Change Control Inspired by Parallel Parking

2020-04-14
2020-01-0134
Lane-changing systems have been developed and applied to improve environmental adaptability of advanced driver assistant system (ADAS) and driver comfort. Lane-changing control consists of three steps: decision making, trajectory planning and trajectory tracking. Current methods are not perfect due to weaknesses such as high computation cost, low robustness to uncertainties, etc. In this paper, a novel lane changing control method is proposed, where lane-changing behavior is analogized to parallel parking behavior. In the perspective of host vehicle with lane-changing intention, the space between vehicles in the target adjacent lane can be regarded as dynamic parking space. A decision making and path planning algorithm of parallel parking is adapted to deal with lane change condition. The adopted algorithm based on rules checks lane-changing feasibility and generates desired path in the moving reference system at the same speed of vehicles in target lane.
Technical Paper

Detection and Tracking Algorithm of Front Vehicle Based on Laser Radar

2015-04-14
2015-01-0307
Nowadays active collision avoidance has become a major focus of research, and a variety of detection and tracking methods of obstacles in front of host vehicle have been applied to it. In this paper, laser radars are chosen as sensors to obtain relevant information, after which an algorithm used to detect and track vehicles in front is provided. The algorithm determines radar's ROI (Region of Interest), then uses a laser radar to scan the 2D space so as to obtain the information of the position and the distance of the targets which could be determined as obstacles. The information obtained will be filtered and then be transformed into cartesian coordinates, after that the coordinate point will be clustered so that the profile of the targets can be determined. A threshold will be set to judge whether the targets are obstacles or not. Last Kalman filter will be used for target tracking. To verify the presented algorithm, related experiments have been designed and carried out.
Technical Paper

Detection of Driver’s Cognitive States Based on LightGBM with Multi-Source Fused Data

2022-03-29
2022-01-0066
According to the statistics of National Highway Traffic Safety Administration, driver’s cognitive distraction, which is usually caused by drivers using mobile phones, has become one of the main causes of traffic accidents. To solve this problem and guarantee the safety of man-vehicle-road system, the most critical work is to improve the accuracy of driver’s cognitive state detection. In this paper, a novel driver’s cognitive state detecting method based on LightGBM (Light Gradient Boosting Machine) is proposed. Firstly, cognitive distraction experiments of making calls are carried out on a driving simulator to collect vehicle states, eye tracking and EEG (electron encephalogram) data simultaneously and feature extraction is conducted. Then a classifier considering road and individual characteristics used for detecting cognitive states is trained based on LightGBM algorithm, with 3 predefined cognitive states including concentration, ordinary distraction and extreme distraction.
Technical Paper

Development of a Control Strategy and HIL Validation of Electronic Braking System for Commercial Vehicle

2014-04-01
2014-01-0076
This article focuses on the research of control algorithm and control logic for the pneumatic EBS (Electronic Braking System) of commercial vehicle. An overall technical program was proposed which develops conventional braking and emergency braking for commercial vehicle EBS. According to the overall scheme, the methods of vehicle state estimation and driver's braking intention were determined, modeling and simulation for key components of commercial vehicle EBS were then carried out. This lead to the development of deceleration control, braking force distribution, brake assist and ABS control. Simulation models for key components of EBS and control strategy were validated through hardware-in-the-loop simulation tests. Simulation results show that the control strategy improves vehicle braking stability and vehicle active safety.
Technical Paper

Economic Analysis of Online DC-Drive System for Long Distance Heavy-Duty Transport Vehicle Incorporating Multi-Factor Sensitivities

2024-04-09
2024-01-2452
Currently, the rapid expansion of the global road transport industry and the imperative to reduce carbon emissions are propelling the advancement of electrified highways (EH). In order to conduct a comprehensive economic analysis of EH, it is crucial to develop a detailed /8.and comprehensive economic model that takes into account various transportation modes and factors that influence the economy. However, the existing economic models for EH lack comprehensiveness in terms of considering different transportation modes and economic factors. This study aims to fill this gap by designing an economic model for an EH-based Online DC-driven system (ODS) for long distance heavy-duty transport vehicle incorporating multi-factor sensitivities. Firstly, the performance parameters of the key components of the system are calculated using vehicle dynamics equations which involves selecting and matching the relevant components and determining the fundamental cost of vehicle transformation.
Technical Paper

Enhancing Lateral Stability in Adaptive Cruise Control: A Takagi-Sugeno Fuzzy Model-Based Strategy

2024-04-09
2024-01-1962
Adaptive cruise control is one of the key technologies in advanced driver assistance systems. However, improving the performance of autonomous driving systems requires addressing various challenges, such as maintaining the dynamic stability of the vehicle during the cruise process, accurately controlling the distance between the ego vehicle and the preceding vehicle, resisting the effects of nonlinear changes in longitudinal speed on system performance. To overcome these challenges, an adaptive cruise control strategy based on the Takagi-Sugeno fuzzy model with a focus on ensuring vehicle lateral stability is proposed. Firstly, a collaborative control model of adaptive cruise and lateral stability is established with desired acceleration and additional yaw moment as control inputs. Then, considering the effect of the nonlinear change of the longitudinal speed on the performance of the vehicle system.
Journal Article

Identification of Vehicle Mass and Braking Force Distribution Algorithm for Electronic Braking System of Heavy-Duty Vehicle

2014-09-30
2014-01-2387
The active safety and stability of tractor and trailer (heavy-duty vehicle) have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research differential braking force distribution control algorithm to improve braking safety of heavy-duty vehicle. The ideal braking force of each wheel axle should be proportional to vertical load of vehicle that is also related to the road adhesion coefficient, the load and the braking intensity. Reasonable braking force distribution can enhance its braking stability and shorten the braking distance by making full use of the road adhesion condition of each wheel. A braking force distribution algorithm is proposed, in which the objective braking force change with the axle load of vehicle.
Journal Article

Multi-Objective Stability Control Algorithm of Heavy Duty Based on EBS

2014-09-30
2014-01-2382
At present, the active safety and stability of heavy vehicles have becoming big concern among the road transportation industry. The purpose of this paper is to specify the research stability and safety of heavy vehicles those set up the accurate and reliable dynamic vehicle reference model and search the method to improve the stability and safety of tractor and semitrailer. A Multi-objective control algorithm was studied to differential braking based on linear quadratic regulator (LQR) control method. Simulation results show that the multi-objective control algorithm can effectively improve the vehicle driving stability and safety.
X