Refine Your Search

Topic

Search Results

Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Journal Article

A Novel Method of Radar Modeling for Vehicle Intelligence

2016-09-14
2016-01-1892
The conventional radar modeling methods for automotive applications were either function-based or physics-based. The former approach was mainly abstracted as a solution of the intersection between geometric representations of radar beam and targets, while the latter one took radar detection mechanism into consideration by means of “ray tracing”. Although they each has its unique advantages, they were often unrealistic or time-consuming to meet actual simulation requirements. This paper presents a combined geometric and physical modeling method on millimeter-wave radar systems for Frequency Modulated Continuous Wave (FMCW) modulation format under a 3D simulation environment. With the geometric approach, a link between the virtual radar and 3D environment is established. With the physical approach, on the other hand, the ideal target detection and measurement are contaminated with noise and clutters aimed to produce the signals as close to the real ones as possible.
Technical Paper

A Novel Three-Planetary-Gear Power-Split Hybrid Powertrain for Tracked Vehicles

2018-04-03
2018-01-1003
Tracked vehicles are widely used for agriculture, construction and many other areas. Due to high emissions, hybrid electric driveline has been applied to tracked vehicles. The hybrid powertrain design for the tracked vehicle has been researched for years. Different from wheeled vehicles, the tracked vehicle not only requires high mobility while straight driving, but also pursues strong steering performance. The paper takes the hybrid track-type dozers (TTDs) as an example and proposes an optimal design of a novel power-split powertrain for TTDs. The commercial hybrid TTD usually adopts the series hybrid powertrain, and sometimes with an extra steering mechanism, which has led to low efficiency and made the structure more complicated. The proposed three-planetary-gear power-split hybrid powertrain can overcome the problems above by utilizing the characteristics of planetary gear sets.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Technical Paper

An Adaptive Clamping Force Control Strategy for Electro-Mechanical Brake System Considering Nonlinear Friction Resistance

2024-04-09
2024-01-2282
The Electronic Mechanical Braking (EMB) system, which offers advantages such as no liquid medium and complete decoupling, can meet the high-quality active braking and high-intensity regenerative braking demands proposed by intelligent vehicles and is considered one of the ideal platforms for future chassis. However, traditional control strategies with fixed clamping force tracking parameters struggle to maintain high-quality braking performance of EMB under variable braking requests, and the nonlinear friction between mechanical components also affects the accuracy of clamping force control. Therefore, this paper presents an adaptive clamping force control strategy for the EMB system, taking into account the resistance of nonlinear friction. First, an EMB model is established as the simulation and control object, which includes the motor model, transmission model, torque balance model, stiffness model, and friction model.
Journal Article

An Efficient Path Planning Methodology Based on the Starting Region Selection

2020-04-14
2020-01-0118
Automated parking is an efficient way to solve parking difficulties and path planning is of great concern for parking maneuvers [1]. Meanwhile, the starting region of path planning greatly affects the parking process and efficiency. The present research of the starting region are mostly determined based on a single algorithm, which limits the flexibility and efficiency of planning feasible paths. This paper, taking parallel parking and vertical parking for example, proposes a method to calculate the starting region and select the most suitable path planning algorithm for parking, which can improve the parking efficiency and reduce the complexity. The collision situations of each path planning algorithm are analyzed under collision-free conditions based on parallel and vertical parking. The starting region for each algorithm can then be calculated under collision-free conditions.
Technical Paper

An Optimization of Suspension Linkages for Wheel-Legged Vehicle

2019-04-02
2019-01-0167
The guiding mechanism of vehicle suspension can keep the wheels moving along planned trajectory. The geometrical design of the reasonable suspension guide mechanism can reduce the vibration transmitted to the body, improve trafficability and handling stability. The vehicle suspension design method was applied to the wheel-legged vehicle, enhancing ride performance. The optimization of suspension hard points can be obtained by using single variable method, adjusting each hard point coordinate independently. It is also widely recommended by using intelligent algorithm to solve well-designed multi-objective parameter optimization function. In this study, the multi-objective parameter optimization function was solved by using the NSGA-II (Non-dominated Sorted Genetic Algorithm-II). Computer simulations with half-car model were used to support the analysis in this study. ADAMS multibody dynamics software was also used to verify the reliability of the results.
Technical Paper

Application of Slope Sensor in Hill-Start to AMT (Automated Manual Transmission) Vehicles

2015-04-14
2015-01-1108
In order to improve the drivability and reduce the clutch friction loss, low-cost slope sensor is used in hill-start control of AMT vehicles. After the power spectrum analysis of the original signal and the design of the digital filter, the angle of the slope is obtained with short enough delay and small enough noise. By using this slope angle information, slope resistance force can be calculated online so that the vehicle can be prevented from sliding backward and optimal launch control can be realized. The digital filter of slope angle signal and the optimal controller of dry clutch engagement are embedded in the TCU (Transmission Control Unit) of a micro-car Geely Panda. Real-vehicle experiments are carried out with optimal clutch controller, which shows that the hill-start with low-cost slope sensor and optimal clutch controller can provide successful vehicle launch with little driveline shock. In addition, it can also avoid backward sliding and engine over-speed effectively.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Design and Control of Thermal Management System for the Fuel Cell Vehicle in Low-Temperature Environment

2020-04-14
2020-01-0851
In low-temperature environment, heat supply requires considerable energy, which significantly increases energy consumption and shortens the mileage of electric vehicle. In the fuel cell vehicles, waste heat generated by the fuel cell system can supply heat for vehicle. In this paper, a thermal management system is designed for a the fuel cell interurban bus. Thermal management strategy aiming at temperature regulation for the fuel cell stack and the passenger compartment and minimal energy consumption is proposed. System model is developed and simulated based on AMESim and Matlab/Simulink co-simulation. Simulation results show that the fuel cell system can provide about 78 % energy of maximum heat requirement in -20 °C ambient temperature environment.
Technical Paper

Design and Testing of a Novel Multiple-Disc Magneto-Rheological Clutch Applied in Vehicles

2015-04-14
2015-01-1133
In recent years, Magneto-rheological (MR) fluid has drawn a lot of attention for its applications in a variety of torque transmission devices, such as brakes, clutches and soft starters of mechanical equipment. Compared with the conventional clutch of vehicle, the novel MR clutch has the advantages of fast response with electronic signal, accuracy control and simple structure without mechanical wear in plates. Besides, MR clutch may be helpful to fast response of vehicle in some situation. Nowadays, most applications of MR fluids in the torque transmission field mainly are used in low-power situation. As far as we know, the proposed effective methods enhancing the output torque of MR devices will increase either the number of fluid gaps or the magnetic field in the MR fluid. This article presents a novel vehicle clutch utilizing magnetorheological fluid and multiple-disc structure.
Technical Paper

Development of Detailed Model and Simplified Model of Lithium-Ion Battery Module under Mechanical Abuse

2022-12-16
2022-01-7120
In order to obtain a good understanding of mechanical behaviors of lithium-ion battery modules in electric vehicles, comprehensive experimental and numerical investigations were performed in the study. Mechanical indentation tests with different indentation heads, different loading directions and different impact speeds were performed on battery modules with prismatic cells. To mitigate thermal runaway, only fully discharged battery modules were used. The force-displacement responses and open circuit voltage were recorded and compared. It was found that the battery modules experienced different failure modes when subjected to mechanical abuse. Besides internal short circuit of cells, external short circuit from bus bar and vapor leakage of electrolyte were also found to deteriorate the mechanical and electrical integrity of the tested modules. Mechanical anisotropy and dynamic effect were found on the battery module.
Technical Paper

Development of Hardware-in-Loop Simulation Platform for Extended Range Hybrid Vehicle Control Unit

2022-10-28
2022-01-7060
Due to the extended range hybrid vehicle powertrain system having multivariable and non-linear characters, this paper proposed a real-time simulation development platform scheme based on model design. First, a segmented energy management strategy (thermostat + power following) was proposed, which aims to improve the engine operation efficiency and reduce the losses during both charging and discharging. Second, the offline simulation model of the extended range hybrid vehicle powertrain system is established, which can realize the control function and meet the requirements of the real vehicle. Third, the hardware in the loop simulation platform of the vehicle controller is established, and the vehicle control program can run correctly in the real-time controller. The test of the offline simulation by Matlab/Simulink and the controller’s hardware in the loop (HIL) test are completed.
Technical Paper

Fuzzy PID Based Optimization of Starting Control for AMT Clutch of Heavy-duty Trucks

2018-04-03
2018-01-1166
Starting control has become a troublesome issue in the developing field of the control system for heavy-duty trucks, due to the complexity of vehicle driving and the variability of driver's intention. The too fast clutch engagement may result in serious impact, influence on the comfort and fatigue life, and even the engine flameout, while the too slow clutch engagement may lead to long time of friction, the increased temperature, and accelerated wear of friction pair, as well as influence on the power performance and fatigue life[1]. Therefore, the key technique of starting control is clutch engagement control, for which the fuzzy PID based optimization of starting control for AMT clutch is proposed, with the pneumatic AMT clutch of heavy-duty trucks as the research object.
Technical Paper

Game-Theoretic Lane-Changing Decision-Making Methods for Highway On-ramp Merging Considering Driving Styles

2024-04-09
2024-01-2327
Driver's driving style has a great impact on lane changing behavior, especially in scenarios such as freeway on-ramps that contain a strong willingness to change lanes, both in terms of inter-vehicle interactions during lane changing and in terms of the driving styles of the two vehicles. This paper proposes a study on game-theoretic decision-making for lane-changing on highway on-ramps considering driving styles, aiming to facilitate safer and more efficient merging while adequately accounting for driving styles. Firstly, the six features proposed by the EXID dataset of lane-changing vehicles were subjected to Principal Component Analysis (PCA) and the three principal components after dimensionality reduction were extracted, and then clustered according to the principal components by the K-means algorithm. The parameters of lane-changing game payoffs are computed based on the clustering centers under several styles.
Technical Paper

Impacts of Dynamic Toe Angle Variations on Four-Wheel Independent Steering Control and their Optimization Strategies

2024-04-09
2024-01-2321
Compared to traditional vehicles, four-wheel independent drive and four-wheel independent steering (4WID-4WIS) vehicles have gained significant attention from researchers due to their enhanced control flexibility and superior handling performance. The steering angle deviation caused by dynamic toe angle changes in two-wheel steering (2WS) systems is often minimal and hence overlooked. However, the impact becomes notably significant in 4WIS systems. This article contrasts the tire slip angle differences between 2WS and 4WIS, and delves into the effects of dynamic toe angle variations on 4WIS control. Solutions are proposed both in terms of steering angle control and suspension design. Firstly, a dynamic model for the 4WID-4WIS vehicle is established. Secondly, a hierarchical tire force distribution strategy is designed for trajectory tracking.
Technical Paper

In-situ Mechanical Characterization of Compression Response of Anode Coating Materials through Inverse Approach

2022-12-16
2022-01-7121
In this decade, the detailed multi-layer FE model is always applied for investigating the mechanical behavior of Li-ion batteries under mechanical abuse. However, establishing a detailed model of different types of batteries requires a series of material characterization of components. To improve the efficiency of the procedure of component calibration, we introduce a procedure of automatic coating material characterization as an example to represent the strategy. The proposed method is constructing a response solver through MATLAB to predict the mechanical behavior of the coating specimen's representative volume element (RVE) under designated test conditions. The coating material is represented through Drucker-Prager-Cap (DPC) model. All parameters, including boundary conditions and material parameters, are included in this solver.
X