Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

A Prediction Model of RON Loss Based on Neural Network

2022-03-29
2022-01-0162
The RON(Research Octane Number) is the most important indicator of motor petrol, and the petrol refining process is one of the important links in petrol production. However, RON is often lost during petrol refining and RON Loss means the value of RON lost during petrol refining. The prediction of the RON loss of petrol during the refining process is helpful to the improvement of petrol refining process and the processing of petrol. The traditional RON prediction method relied on physical and chemical properties, and did not fully consider the high nonlinearity and strong coupling relationship of the petrol refining process. There is a lack of data-driven RON loss models. This paper studies the construction of the RON loss model in the petrol refining process.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
Technical Paper

Accurate Pressure Control Strategy of Electronic Stability Program Based on the Building Characteristics of High-Speed Switching Valve

2019-04-02
2019-01-1107
The Electronic Stability Program (ESP), as a key actuator of traditional automobile braking system, plays an important role in the development of intelligent vehicles by accurately controlling the pressure of wheels. However, the ESP is a highly nonlinear controlled object due to the changing of the working temperature, humidity, and hydraulic load. In this paper, an accurate pressure control strategy of single wheel during active braking of ESP is proposed, which doesn’t rely on the specific parameters of the hydraulic system and ESP. First, the structure and working principle of ESP have been introduced. Then, we discuss the possibility of Pulse Width Modulation (PWM) control based on the mathematical model of the high-speed switching valve. Subsequently, the pressure building characteristics of the inlet and outlet valves are analyzed by the hardware in the Loop (HiL) experimental platform.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

An Efficient Trivial Principal Component Regression (TPCR)

2019-04-02
2019-01-0515
Understanding a system behavior involves developing an accurate relationship between the explanatory (predictive) variables and the output response. When the observed data is ill-conditioned with potential collinear correlations among the measured variables, some of the statistical methods such as least squared method (LSM) fail to generate good predictive models. In those situations, other methods like Principal Component Regression (PCR) are generally applicable. Additionally, the PCR reduces the dimensionality of the system by making use of covariance relationship among the variables. In this paper, an improved regression method over PCR is proposed, which is based on the Trivial Principal Components (TPC). The TPC regression (TPCR) makes use of the covariance of the output response and predictive variables while extracting principal components. A new method of selecting potential principal components for variable reduction in TPCR is also proposed and validated.
Technical Paper

An Experimental Study on the Effects of Split Injection in Stoichiometric Dual-Fuel Compression Ignition (SDCI) Combustion

2015-04-14
2015-01-0847
Stoichiometric dual-fuel compression ignition (SDCI) combustion has superior potential in both emission control and thermal efficiency. Split injection of diesel reportedly shows superiority in optimizing combustion phase control and increasing flexibility in fuel selection. This study focuses on split injection strategies in SDCI mode. The effects of main injection timing and pilot-to-total ratio are examined. Combustion phasing is found to be retarded in split injection when overmixing occurs as a result of early main injection timing. Furthermore, an optimised split injection timing can avoid extremely high pressure rise rate without great loss in indicated thermal efficiency while maintaining soot emission at an acceptable level. A higher pilot-to-total ratio always results in lower soot emission, higher combustion efficiency, and relatively superior ITE, but improvements are not significant with increased pilot-to-total ratio up to approximately 0.65.
Technical Paper

An Integrated Method for Evaluation of Seat Comfort Based on Virtual Simulation of the Interface Pressures of Driver with Different Body Sizes

2017-03-28
2017-01-0406
This paper presents an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For simulation of the body-seat interaction and for calculation of the interface pressure, besides body dimensions and material characteristics an important aspect is the posture and position of the driver body with respect to seat. In addition, to ensure accommodation of the results to the target population usually several individuals are simulated, whose body anthropometries cover the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques are usually adopted to generate the individuals and to predict the detailed body dimensions. In biomechanical modeling of human body and seat, the correct element type, the rational settings of the contacts between different parts, the correct exertion of the loads to the calculation field, etc., are also crucial.
Technical Paper

An Investigative Study of Sudden Pressure Increase Phenomenon Across the SCR on Filter Catalyst

2016-10-17
2016-01-2319
In the previous research1), the authors discovered that the sudden pressure increase phenomenon in diesel particulate filter (DPF) was a result of soot collapse inside DPF channels. The proposed hypothesis for soot collapse was a combination of factors such as passive regeneration, high humidity, extended soak period, high soot loading and high exhaust flow rate. The passive regeneration due to in-situ NO2 and high humidity caused the straw like soot deposited inside DPF channels to take a concave shape making the collapse easier during high vehicle acceleration. It was shown that even if one of these factor was missing, the undesirable soot collapse and subsequent back pressure increase did not occur. Currently, one of the very popular NOx reduction technologies is the Selective Catalytic Reduction (SCR) on Filter which does not have any platinum group metal (PGM) in the washcoat.
Technical Paper

Biosignal-Based Driving Experience Analysis between Automated Mode and Manual Mode

2024-04-09
2024-01-2504
With the rapid development of intelligent driving technology, there has been a growing interest in the driving comfort of automated vehicles. As vehicles become more automated, the role of the driver shifts from actively engaging in driving tasks to that of a passenger. Consequently, the study of the passenger experience in automated driving vehicles has emerged as a significant research area. In order to examine the impact of automatic driving on passengers' riding experience in vehicle platooning scenarios, this study conducted real vehicle experiments involving six participants. The study assessed the subjective perception scores, eye movement, and electrocardiogram (ECG) signals of passengers seated in the front passenger seat under various vehicle speeds, distances, and driving modes. The results of the statistical analysis indicate that vehicle speed has the most substantial influence on passenger perception.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Cabin Thermal Comfort Simulation of Truck Based on CFD

2015-04-14
2015-01-0344
It is known that the automobile cabin thermal comfort, could keep the driver and passengers feel better which has a great effect on traffic safety. In this paper, to the FAW truck cab, we did some researches about automobile cabin thermal comfort. Our plan is to calculate the air flow distribution and the temperature in steady and transient state when there is warm or cool air flow. The heating and cooling experiment methods standard of cabin are based on the national standard and the automobile industry standard of China. Then the numerical simulation process becomes very important. So we used the commercial CFD code- STAR-CCM+ for study in this paper. Firstly, Geometry Clean up. Secondly, Wrap and Remesh, we chose the internal surface at the wrap surface of cabin and air conditioning pipes, then we remesh the surface. Thirdly, generate the volume mesh which is polyhedral mesh, and the number of the volume mesh is 9.4 millions.
Journal Article

Characterization of Seat Lateral Support as a Mechanical Behavior

2020-04-14
2020-01-0870
Seat lateral support is often talked about as a design parameter, but usually in terms of psychological perception. There are many difficulties in quantifying lateral support mechanically to the engineering teams: Anthropometric variation causes different people to interact with the seat in different places and at different angles, BPD studies are usually planar and don’t distinguish between horizontal support and vertical resistance to sinking in, most mechanical test systems are typically single-DOF and can’t apply vertical and horizontal loads concurrently, and there is scant literature describing the actual lateral loads of occupants. In this study, we characterize the actual lateral loading on example seating from various sized/shaped occupants according to dynamic pressure distribution. From this information, a six-DOF load and position control test robot (KUKA OccuBot) is used to replicate that pressure distribution.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Technical Paper

Comparative Analysis of Truck Ride Comfort of 4 Degree of Freedom Rigid-Elastic Model with 2 Degree of Freedom Rigid Model

2015-04-14
2015-01-0615
In order to study the influence of body flexibility on the truck ride comfort, a 4 DOF half vibration model of truck based on the motion synthesis between rigid body and body flexibility is established using elastic beam theory of equal section with both free ends. At the same time, a corresponding 2 DOF rigid vibration model is also built. The frequency response functions of system and response variables of two models are derived based on front wheel. The power spectral densities and the root mean square values of body acceleration, dynamic deflections and relative dynamic loads are obtained. By comparing the simulation results of rigid-elastic model and rigid model, it shows that body flexibility has a great impact on truck ride comfort and it cannot be ignored.
Technical Paper

Comparison of Spray Collapses from Multi-Hole and Single-Hole Injectors Using High-Speed Photography

2020-04-14
2020-01-0321
In this paper, the differences between multi-hole and single-hole spray contour under the same conditions were compared by using high-speed photography. The difference between the contour area of multi-hole and that of single-hole spray was used as a parameter to describe the degree of spray collapse. Three dimensionless parameters (i.e. degree of superheat, degree of undercooling, and nozzle pressure ratio) were applied to characterize inside-nozzle thermodynamic, outside-nozzle thermodynamic and kinetic factors, respectively. In addition, the relationship between the three dimensionless parameters and the spray collapse was analyzed. A semi-empirical equation was proposed for evaluation of the degree of collapse based on dimensionless parameters of flash and non-flash boiling sprays respectively.
Technical Paper

Computational Accuracy and Efficiency of the Element Types and Sizes for Car Acoustic Finite Element Model

2014-04-01
2014-01-0890
Automobile cabin acoustical comfort is one of the main features that may attract customers to purchase a new car. The acoustic cavity mode of the car has an effect on the acoustical comfort. To identify the factors affecting computing accuracy of the acoustic mode, three different element type and six different element size acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different element type models are meshed in three different ways, tetrahedral elements, hexahedral elements and node coupling tetrahedral and hexahedral elements (tetra-hexahedral elements). The six different element size models are meshed with hexahedral element varies from 50mm to 75mm. Modal analysis test of the passenger car is conducted using loudspeaker excitation to identify the compartment cavity modes.
Technical Paper

Control Synthesis for Distributed Vehicle Platoon Under Different Topological Communication Structures

2019-04-02
2019-01-0494
The wireless inter-vehicle communication provide a manner to achieve multi-vehicle cooperative driving, and the platoon of automotive vehicle can significantly improve traffic efficiency and ensure traffic safety. Previous researches mostly focus on the state of the proceeding vehicle, and transmit information from self to the succeeding vehicle. Nevertheless, this structure possesses high requirements for controller design and shows poor effect in system stability. In this paper, the state of vehicles is not only related to the information of neighbor vehicles, while V2V communication transmit information over a wide range of area. To begin with, the node dynamic model of vehicle is described by linear integrator with inertia delay and the space control strategy is proposed with different topological communication structures as BF, LBF, PBF, etc.
Technical Paper

Coordinated Control of Continuously Variable Transmission Speed Ratio in Engine Starting-Up for Hybrid Electric Vehicle

2021-03-16
2021-01-5003
In order to improve the mode switching performance of parallel hybrid electric vehicles (PHEV) and make better use of the dynamics of the vehicle, this paper proposes a three-stage control method for the start-up mode of start-up, speed synchronization, and clutch slip based on the response characteristics of actual vehicle components and the complex working conditions of the actual road. In the speed synchronization phase, a coordinated control method of “engine speed active following + continuously variable transmission (CVT) speed ratio motor speed limiting” is proposed. The real vehicle test results show that the engine starting-up coordinated control method can significantly accelerate the speed synchronization and shorten the starting-up mode duration during the rapid acceleration, so that the vehicle’s power performance can be well played and the ride comfort can be effectively guaranteed.
X