Refine Your Search

Topic

Search Results

Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Study of Calculation Method of Wheel Speed and Wheel Angular Acceleration Based on dSPACE Rapid Control Prototyping in Modern Automotive Control Systems

2006-10-31
2006-01-3547
One of the key technologies of automotive active safety systems is to calculate the wheel speed and wheel angular acceleration or deceleration. Obtaining an accurate control quantity is the prerequisite for active safety systems no matter what control logics are used to realize the control function. This paper puts forward a new wheel speed processing algorithm. This method was simulated in MATLAB \ Simulink. Then it was tested in a certain type of vehicle of FAW by applying dSPACE RCP. It proves that this algorithm assures the precision at high and low speed and the real-time performance at low speed.
Technical Paper

Analysis of Illumination Condition Effect on Vehicle Detection in Photo-Realistic Virtual World

2017-09-23
2017-01-1998
Intelligent driving, aimed for collision avoidance and self-navigation, is mainly based on environmental sensing via radar, lidar and/or camera. While each of the sensors has its own unique pros and cons, camera is especially good at object detection, recognition and tracking. However, unpredictable environmental illumination can potentially cause misdetection or false detection. To investigate the influence of illumination conditions on detection algorithms, we reproduced various illumination intensities in a photo-realistic virtual world, which leverages recent progress in computer graphics, and verified vehicle detection effect there. In the virtual world, the environmental illumination is controlled precisely from low to high to simulate different illumination conditions in the driving scenarios (with relative luminous intensity from 0.01 to 400). Sedan cars with different colors are modelled in the virtual world and used for detection task.
Technical Paper

Analysis of Vehicle Steering Stability of Nonlinear Four Wheel Steering Based on Sliding Mode Control

2018-08-07
2018-01-1593
Steering movement is the most basic movement of the vehicle, in the car driving process, the driver through the steering wheel has always been to control the direction of the car, in order to achieve their own driving intention. Four Wheel Steering (4WS) is an advanced vehicle control technique which can markedly improve vehicle steering characteristics. Compared with traditional front wheel steering vehicles, 4WS vehicles can steer the front wheels and the rear wheels individually for cornering, according to the vehicle motion states such as the information of vehicle speed, yaw velocity and lateral acceleration. Therefore, 4WS can enhance the handling stability and improve the active safety for vehicles.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Technical Paper

Balanced Suspension Thrust Rod Fatigue Life Prediction

2016-09-27
2016-01-8044
In order to predict the fatigue life of thrust rod heavy duty commercial vehicle balanced suspension, based on the continuum mechanics theory, the fatigue life prediction model of rubber with equivalent effect as damage parameter is established. Based on the equivalent stress and fatigue cumulative damage theory, the fatigue damage evolution equation of rubber material expressed by stress is derived by using the strain energy function. The general fatigue life model is established by using the maximum logarithmic principal strain as the damage parameter. The finite element model of the thrust rod is established, and the stress distribution of the spherical hinge rubber layer and the easy damage area are analyzed. Based on the equivalent stress calculation results and the axial tension stress and strain data of the rubber material, the accuracy of the results of the finite element calculation is verified.
Technical Paper

Clarity of View: An AHP Multi-Factor Evaluation Framework for Driver Awareness Systems in Heavy Vehicles

2015-04-14
2015-01-1704
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance accuracy, image detection time, and distortion.
Technical Paper

Co-Simulation Research of Integrated Electro-Hydraulic Braking System

2016-04-05
2016-01-1647
A program of integrated electro-hydraulic braking system is proposed, and its structural composition and working principle are analyzed. According to the structural and mechanical characteristics of all key components, through some reasonable assumptions and simplifications, a motor, a brake master cylinder, four brake wheel cylinders, solenoid valves and an ESP (Electronic Stability Program) algorithm model is set up and simulations of typical braking conditions are carried out based on the Matlab/Simulink. Finally, after the assembly of each sub-model is complete and combining a vehicle which is set up in CarSim software environment, simulation tests and comprehensive performance analysis of the active safety stability control for a vehicle in double lane change and single lane change situations are carried out respectively. According to the dynamic characteristic curves of system, the effects of different structural and control parameters on braking performance are analyzed.
Technical Paper

Commercial Vehicle's Longitudinal Deceleration Precise Control Considering Vehicle-Actuator Dynamic Characteristics

2024-04-09
2024-01-2313
The installation of the Electronic Braking System (EBS) could effectively improve braking response speed, shorten braking distance, and ensure driving safety of commercial vehicles. However, during longitudinal deceleration control process, the commercial vehicles face not only challenges such as large inertia mass and random road gradient resistance of the vehicle layer, but also non-linear characteristics of the EBS actuator layer. In order to solve these problems, this paper proposes a commercial vehicle’s longitudinal deceleration precise control strategy considering vehicle-actuator dynamic characteristics. First, longitudinal dynamics of commercial vehicle is analyzed, and so is the EBS’ non-linear response hysteresis characteristics. Then, we design the dual layer deceleration control strategy. In vehicle layer, the recursive least squares with forgetting factor and Kalman filtering are comprehensively applied to dynamically estimate the vehicle mass and driving road slope.
Technical Paper

Commercial Vehicles Thrust Rod Static and Dynamic Characteristics Analysis

2016-10-17
2016-01-2345
In order to study the static and dynamic characteristics of the thrust rod. Based on the multi-body dynamics theory, the dynamic model of the thrust rod and the vehicle system is established by using ADAMS software. The limit braking condition is simulated, and the limit braking load of the thrust rod is obtained. Thrust rod finite element model is established, the load calculation value and rubber test data as a finite element analysis of input conditions, using ABAQUS software to carry on the stiffness and strength analysis, analysis results show that the strength meets the requirement, and the stiffness and strength calculation result is in good agreement with the sample test, accurately describes the finite element model. The analytical method used can be used to predict the stiffness of the thrust rod.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
Technical Paper

Development and Research on Control Strategy of Advanced Electronic Braking Systems for Commercial Vehicle

2014-09-30
2014-01-2285
Electronic braking system (EBS) of commercial vehicle is developed based on Anti-lock Braking System (ABS), for the purpose of enhancing the braking performance. Based on the previous study, this paper aims at the development and research on the control strategy of advanced electronic braking system for commercial vehicle, which mainly includes braking force distribution and multiple targets control strategy. In the study of braking force distribution control strategy, the mass of vehicle and the axle loads will be calculated dynamically and the braking force of each wheel will be distributed regarding to the axle loads. The braking intention recognition takes the brake pad wear into account when braking uncritically, so it can detect a difference in the pads between the front and the rear axles. The brake assist strategy supports the driver during emergency braking and the braking distance is shortened by the reduction of the braking system response time.
Technical Paper

Development and Verification of Electronic Braking System ECU Software for Commercial Vehicle

2013-11-27
2013-01-2736
Electronic braking system (EBS) of commercial vehicle is developed from ABS to enhance the brake performance. Based on the early development of controller hardware, this paper starts with an analysis of the definition of EBS. It aims at the software design of electronic control unit, and makes it compiled into the controller in the form of C language by the in-depth study about control strategy of EBS in different braking conditions. Designed controller software is divided into two layers. The upper control strategy includes the recognition algorithm of driver's braking intention, estimation algorithm of the vehicle state, conventional braking strategy which consists of the algorithm of deceleration control and braking force distribution, and emergency braking strategy which consists of the algorithm of brake assist control and ABS control.
Technical Paper

Development of Simulation Platform and Control Strategy of Electronic Braking System for Commercial Vehicles

2014-09-30
2014-01-2286
Pneumatic Electric Braking System (EBS) is getting widely spread for commercial vehicles. Pneumatic EBS improves the problem of slow response of traditional pneumatic braking system by implementing brake-by-wire. However, the time-delay response and hysteresis of some electro-pneumatic components and some other issues decrease the response and control accuracy of the pneumatic EBS.
Technical Paper

Development of a Control Strategy and HIL Validation of Electronic Braking System for Commercial Vehicle

2014-04-01
2014-01-0076
This article focuses on the research of control algorithm and control logic for the pneumatic EBS (Electronic Braking System) of commercial vehicle. An overall technical program was proposed which develops conventional braking and emergency braking for commercial vehicle EBS. According to the overall scheme, the methods of vehicle state estimation and driver's braking intention were determined, modeling and simulation for key components of commercial vehicle EBS were then carried out. This lead to the development of deceleration control, braking force distribution, brake assist and ABS control. Simulation models for key components of EBS and control strategy were validated through hardware-in-the-loop simulation tests. Simulation results show that the control strategy improves vehicle braking stability and vehicle active safety.
Technical Paper

Effects of Tire and Vehicle Design Characteristics on Rollover of Tractor Semi-Trailers

2004-03-08
2004-01-1739
Understanding the effects of tire and vehicle properties on the rollover propensity of tractor semi-trailer trucks is essential. The major objective of the project described by this paper was to develop a simplified computational tool that can be used to understand and predict the effects of various tire characteristics and truck design parameters on rollover under steady cornering and non-tripped conditions. In particular, this tool may be used to help understand the basic mechanisms governing rollover propensity of trucks equipped with New Generation Wide Single tires as contrasted with conventional tires. Effects of tire flexibility, roll-compliant suspensions, fifth - wheel lash and nonlinear suspension characteristics are included in the model and are presented below. Design parameter data used as input to the model were obtained from Michelin Americas Research and Development Corporation.
Technical Paper

Effects of Tractor and Trailer Torsional Compliance and Fill Level of Tanker Trailers on Rollover Propensity During Steady Cornering

2005-11-01
2005-01-3518
Understanding the parameters which influence the tendency for a heavy truck to exhibit rollover is of paramount importance to the trucking industry. Multiple parameters influence the vehicle’s motion, and the ability to determine how each affects the vehicle as a system would be an indispensable tool for the design of such vehicles. To be able to perform such predictions and analysis, models and a computer simulation were created to allow the examination of changes in design parameters in such vehicles. The vehicle model was originally developed by Law [1] and presented in Law and Janajreh [2]. The model was extended further by Lawson [3, 4] to include (a) the effects of the torsional compliance of both the tractor and trailer, and (b) tanker trailers with various levels of liquid fill. In the present paper, both the tractor and trailer compliances were studied independently to determine their influences on the rollover stability of the vehicle.
Technical Paper

Energy-Aware Predictive Control for the Battery Thermal Management System of an Autonomous Off-Road Vehicle

2024-04-09
2024-01-2665
Off-road vehicles are increasingly adopting hybrid and electric powertrains for improved mobility, range, and energy efficiency. However, their cooling systems consume a significant amount of energy, affecting the vehicle’s operating range. This study develops a predictive controller for the battery thermal management system in an autonomous electric tracked off-road vehicle. By analyzing the system dynamics, the controller determines the optimal preview horizon and controller timestep. Sensitivity analysis is conducted to evaluate temperature tracking and energy consumption. Compared to an optimal controller without preview, the predictive controller reduces energy consumption by 55%. Additionally, a relationship between cooling system energy consumption and battery size is established. The impact of the preview horizon on energy consumption is examined, and a tradeoff between computational cost and optimality is identified.
X