Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3-D Numerical Simulation of Transient Heat Transfer among Multi-Component Coupling System in Internal Combustion Chamber

2008-06-23
2008-01-1818
A 3-D numerical analysis model of transient heat transfer among the multi-component coupling system in combustion chamber of internal combustion engine has been developed successfully in the paper. The model includes almost all solid components in combustion chamber, such as piston assembly, cylinder liner, cylinder head gasket, cylinder head, intake valves and exhaust valves, etc. With two different coupling heat transfer modes, one is the lubricant film heat conduction between two moving components, another is the contact heat conduction between two immovable solid components, and with the direct coupled-field analysis method of FEM, the heat transfer relation among the components is established. The simulation result dedicates the transient heat transfer process among the components such as moving piston assembly and cylinder liner, moving valves and cylinder head. The effect of cylinder head gasket on heat transfer among the components is also studied.
Technical Paper

A Closed Loop Method for Vehicle Instrument Cluster Test Automation

2019-04-02
2019-01-1250
Instrument Panel Cluster (IPC), is a key ECU in vehicles. As IPC is a visual product, testing the software features of IPC is highly manual effort. Software Testing constitutes for approx. 35% of the total Software Development Life Cycle (SDLC). High focus on quick to market, shorter SDLC coupled with manual validation environment poses a challenge of increasing testing efficiency and improving software quality. This challenge drove the need to investigate a solution to automate the testing process and cut down the huge manual effort that goes into validating an Instrument Panel Cluster (IPC) software. The proposed intrusive and non-intrusive approaches to automate the testing process of IPC software employs a Frame Grabbing technique for the former approach and a Camera based technique for the latter. Both the approaches are robust, reliable, and scalable and covers the major portion of Vehicle Instrument cluster test scenarios.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

A Comparative Study on ESC Drive and Brake Control Based on Hierarchical Structure for Four-Wheel Hub-Motor-Driven Vehicle

2019-11-04
2019-01-5051
Electronic Stability Control (ESC) is an important measure to proactively guarantee vehicle safety. In this paper, the method of four-wheel hub-motor torque control is compared with the traditional single-wheel hydraulic brake control in ESC system. The control strategy adopts the hierarchical structure. In upper controller, the stability of the vehicle is identified by threshold method, the additional yaw moment control uses a way to get the moment including feedforward and feedback parts based on the linear quadratic regulator (LQR). The medium controller is tire slip rate control, in order to get the optimal target slip rate from the upper additional yaw moment, a method of quadratic programming to optimize the longitudinal force is proposed for each wheel. The inputs of tire state for the magic tire model is introduced so as to calculate the target slip rate from the target longitudinal force.
Technical Paper

A Control Oriented Simplified Transient Torque Model of Turbocharged Diesel Engines

2008-06-23
2008-01-1708
Due to the high cost of torque sensors, a calculation model of transient torque is required for real-time coordinating control purpose, especially in hybrid electric powertrains. This paper presents a feedforward calculation method based on mean value model of turbocharged non-EGR diesel engines. A fitting variable called fuel coefficient is defined in an affine relation between brake torque and fuel mass. The fitting of fuel coefficient is simplified to depend only on three variables (engine speed, boost pressure, injected fuel mass). And a two-layer feedforward neural network is utilized to fit the experimental data. The model is validated by load response test and ETC (European Transient Cycle) transient test. The RMSE (root mean square error) of the brake torque is less than 3%.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Technical Paper

A Hardware-in-the-Loop Simulator for Vehicle Adaptive Cruise Control Systems by Using xPC Target

2007-08-05
2007-01-3596
A HIL simulator for developing vehicle adaptive cruise control systems is presented in this paper. The xPC target is used to establish real-time simulation environment. The simulator is composed of a virtual vehicle model, real components of an ACC system like ECU, electronic throttle and braking modulator, a user interface to facilitate simulation, and brake and accelerator pedals to make interactive driver inputs easier. The vehicle model is validated against data from field test. Tests of an ACC controller in the real-time are conducted on the simulator.
Technical Paper

A Hybrid Classification of Driver’s Style and Skill Using Fully-Connected Deep Neural Networks

2021-02-03
2020-01-5107
Driving style and skill classification are of great significance in human-oriented advanced driver-assistance system (ADAS) development. In this paper, we propose Fully-Connected Deep Neural Networks (FC-DNN) to classify drivers’ styles and skills with naturalistic driving data. Followed by the data collection and pre-processing, FC-DNN with a series of deep learning optimization algorithms are applied. In the experimental part, the proposed model is validated and compared with other commonly used supervised learning methods including the k-nearest neighbors (KNN), support vector machine (SVM), decision tree (DT), random forest (RF), and multilayer perceptron (MLP). The results show that the proposed model has a higher Macro F1 score than other methods. In addition, we discussed the effect of different time window sizes on experimental results. The results show that the driving information of 1s can improve the final evaluation score of the model.
Technical Paper

A Hybrid Physical and Data-Driven Framework for Improving Tire Force Calculation Accuracy

2023-04-11
2023-01-0750
The accuracy of tire forces directly affects the vehicle dynamics model precision and determines the ability of the model to develop the simulation platform or design the control strategy. In the high slip angle, due to the complex interactions at tire-road interfaces, the forces generated by the tires are high nonlinearity and uncertainty, which pose issues in calculating tire force accurately. This paper presents a hybrid physical and data-driven tire force calculation framework, which can satisfy the high nonlinearity and uncertainty condition, improve the model accuracy and effectively leverage prior knowledge of physical laws. The parameter identification for the physical tire model and the data-based compensation for the unknown errors between the physical tire model and actual tire force data are contained in this framework. First, the parameters in the selected combined-slip Burckhardt tire model are identified by the nonlinear least square method with tire test data.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Technical Paper

A Layered Active Balance System for Lithium-ion Power Battery Based on Auxiliary Power

2022-08-30
2022-01-1132
In this paper, a high-efficiency and low-cost lithium-ion battery pack active balance system is designed. It adopts a distributed structure and consists of three parts: auxiliary power module, one-way isolated DC/DC conversion module, and a battery group. The battery single cells in the battery pack are layered and divided into m battery groups in total, and each battery group is composed of n battery single cells. Each battery group is connected to an isolated DC/DC conversion module, and all the conversion modules are connected in parallel with the auxiliary power. Taking the SOC average value of the all-single cells in one battery group as the balancing variable, the auxiliary power is controlled to charge the battery group with the lower SOC average value, so that the difference of the SOC average value of all battery groups is within the set threshold range, so as to realize the active balance of each battery group.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Mechanism-Based Thermomechanical Fatigue Life Assessment Method for High Temperature Engine Components with Gradient Effect Approximation

2019-04-02
2019-01-0536
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length.
Technical Paper

A Method for Evaluating the Complexity of Autonomous Driving Road Scenes

2024-04-09
2024-01-1979
An autonomous vehicle is a comprehensive intelligent system that includes environment sensing, vehicle localization, path planning and decision-making control, of which environment sensing technology is a prerequisite for realizing autonomous driving. In the early days, vehicles sensed the surrounding environment through sensors such as cameras, radar, and lidar. With the development of 5G technology and the Vehicle-to-everything (V2X), other information from the roadside can also be received by vehicles. Such as traffic jam ahead, construction road occupation, school area, current traffic density, crowd density, etc. Such information can help the autonomous driving system understand the current driving environment more clearly. Vehicles are no longer limited to areas that can be sensed by sensors. Vehicles with different autonomous driving levels have different adaptability to the environment.
Technical Paper

A Method of Battery State of Health Prediction based on AR-Particle Filter

2016-04-05
2016-01-1212
Lithium-ion battery plays a key role in electric vehicles, which is critical to the system availability. One of the most important aspects in battery managements systems(BMS) in electric vehicles is the stage of health(SOH) estimation. The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. The classical approach of current integration(coulomb counting) can't get the accurate values because of accumulative error. In order to provide timely maintenance and replacements of electric vehicles, several estimation approaches have been proposed to develop a reliable and accurate battery state of health estimation. A common drawback of previous algorithm is that the computation quantity is huge and not quite accurate, that is updated partially in this study.
Technical Paper

A Multi-Axle and Multi-Type Truck Load Identification System for Dynamic Load Identification

2022-03-29
2022-01-0137
Overloading of trucks can easily cause damage to roads, bridges and other transportation facilities, and accelerate the fatigue loss of the vehicles themselves, and accidents are prone to occur under overload conditions. In recent years, various countries have formulated a series of management methods and governance measures for truck overloading. However, the detection method for overload behavior is not efficient and accurate enough. At present, the method of dynamic load identification is not perfect. No matter whether it is the dynamic weight measurement method of reconstructing the road surface or the non-contact dynamic weight measurement method, little attention is paid to the difference of different vehicles. Especially for different vehicles, there should be different load limits, and the current devices are not smart enough.
Technical Paper

A New Clutch Actuation System for Dry DCT

2015-04-14
2015-01-1118
Dry dual clutch transmission (DCT) has played an important role in the high performance applications as well as low-cost market sectors in Asia, with a potential as the future mainstream transmission technology due to its high mechanical efficiency and driving comfort. Control system simplification and cost reduction has been critical in making dry DCT more competitive against other transmission technologies. Specifically, DCT clutch actuation system is a key component with a great potential for cost-saving as well as performance improvement. In this paper, a new motor driven clutch actuator with a force-aid lever has been proposed. A spring is added to assist clutch apply that can effectively reduce the motor size and energy consumption. The goal of this paper is to investigate the feasibility of this new clutch actuator, and the force-aid lever actuator's principle, physical structure design, and validation results are discussed in details.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper

A New Rotating Wedge Clutch Actuation System

2017-10-08
2017-01-2441
Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
X