Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Comparison of a Semi-Active Inerter and a Semi-Active Suspension

2010-10-05
2010-01-1903
Inerters have become a hot topic in recent years, especially in vehicle, train, and building suspension systems. The performance of a passive inerter and a semi-active inerter was analyzed and compared with each other and it showed that the semi-active inerter has much better performance than the passive inerter, especially with the Hybrid control method. Eight different layouts of suspensions were analyzed with a quarter car model in this paper. The adaptation of dimensionless parameters was considered for a semi-active suspension and the semi-active inerters. The performance of the semi-active inerter suspensions with different layouts was compared with a semi-active suspension with a conventional parallel spring-damper arrangement. It shows a semi-active suspension, with more simple configuration and lower cost, has similar or better compromise between ride and handling than a semi-active inerter with the Hybrid control.
Technical Paper

A New Predictive Deadbeat Current Control Strategy for Hub Motor Based on State-observer

2014-10-13
2014-01-2902
In this paper, the predictive control strategy is employed to improve the current tracking performance of hub motor in 4WD electric vehicle due to its fast dynamic response. But the performance of the conventional predictive deadbeat current control suffers greatly from the parameter variations and other disturbances. Toward this, this paper presents a new predictive control strategy for hub motor; this control scheme combines an improved predictive control law with a state-observer to estimate the future motor currents and system disturbances based on a decoupled model. It provides a decoupled control of hub motor and offers stability against the variations in motor inductance and robustness against system uncertainties. The feasibility and validity of the proposed predictive current control strategy is verified through the simulation results.
Technical Paper

A Sliding Mode Observer for Vehicle Slip Angle and Tire Force Estimation

2014-04-01
2014-01-0865
In this paper, a sliding mode observer for estimating vehicle slip angle and tire forces is developed. Firstly, the sliding mode observer design approach is presented. A system damping is included in the sliding mode observer to speed the observer convergence and to decrease the observer chattering. Secondly, the sliding mode observer for vehicle states is developed based on a 7 DOF embedded vehicle model with a nonlinear tire model ‘UniTire’. In addition, since the tire lateral stiffness is sensitive to the vertical load, the load transfers are considered in the embedded model with a set of algebraic equations. Finally, a simulation evaluation of the proposed sliding mode observer is conducted on a validated 14 DOF vehicle model. The simulation results show the model outputs closely match the estimations by the proposed sliding mode observer.
Technical Paper

A Study of Tire Lag Property

2001-03-05
2001-01-0751
Tire lag property is a basic property of tire dynamics, and it has significant influence on the performance of vehicle dynamics. In distance domain, the side force and moments produced by a massless tire are basically displacement or path frequency dependent, rather than time dependent. In the paper, on the basis of the stretched-string model, the first-order filtering of deflection for the front point of the contact print and the first-order filtering of side force have been introduced. Tire system can be regarded as a first-order linear system under small slip angle. The force response of tire has the characteristics of the responses of first-order linear system under small angle. The relaxation length is an important parameter in studying tire lag property. It decreases with increasing slip angle. It plays an important role in the study of tire transient properties.
Technical Paper

A Study on Force Distribution Control for the Electric Vehicle with Four In-wheel motors

2014-09-30
2014-01-2379
This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
Journal Article

An Accurate Modeling for Permanent Magnet Synchronous Wheel Motor Including Iron Loss

2014-04-01
2014-01-1867
For high torque permanent magnet wheel motor, this paper describes an experimental research method to optimize and identify the motor parameters based on the results of offline calculation. In order to improve the accuracy of motor parameters identification, the motor model considering the affect of iron loss was established, and the motor parameters were identified using genetic algorithm (GA). Based on this, parameters validation experiment was performed. The results show that: parameters obtained by this method can be used to describe the steady-state and transient-state response of permanent magnet synchronous motors accurately.
Technical Paper

Developmental Driver Model for Long Vehicles Based on Preview-Follower Theory

2018-08-07
2018-01-1629
A long vehicle is more difficult to drive than a short one, but the mechanism of this phenomenon is still ambiguous. This paper will devote main effort to elaborate this phenomenon based on the theory of preview-follower driver model. Drivers always hope that the vehicle center can travel according to a predetermined trajectory. However, there is often a deviation between the vehicle center predicted by the driver and the actual center. As for this phenomenon, a conception of driver preview eccentricity is proposed. In order to analyze the influence of the proposed conception on vehicle driving track, a multi-axle steering vehicle model is built and some basic expressions of important parameters are deduced from this model firstly. Then, the developmental driver model with the factor of preview eccentricity based on preview-follower theory is established in the state of low velocity quasi-static. Subsequently, this model for long vehicles is extended to a dynamic driver model.
Technical Paper

Experimental Research on the Pressure Following Control of Electro-Hydraulic Braking System

2014-04-01
2014-01-0848
Pressure following control is the basic function of Electro-Hydraulic Braking system (EHB), which is also the key technology of stability control system and regenerative braking system for hybrid and electric vehicles. Experimental research is an important method for the control and application of EHB. This paper describes a method to test and control the EHB system through experiment on the Hardware-in-the-loop (HIL) test bench and wheel motor electric vehicle. First, the HIL test bench was established, in which the EHB was tested, including the characteristics of solenoid valves and motor. Then the wheel cylinder pressure was controlled to follow the specific signal input and the master cylinder pressure. Based on this, EHB and the pressure following control method were applied to the wheel motor electric vehicle. The results show that the braking pressure can follow the driver's braking intention to realize the conventional braking function of electric vehicles.
Technical Paper

Experimental and Analytical Property Characterization of a Self-Damped Pneumatic Suspension System

2010-10-05
2010-01-1894
This study investigates the fundamental stiffness and damping properties of a self-damped pneumatic suspension system, based on both the experimental and analytical analyses. The pneumatic suspension system consists of a pneumatic cylinder and an accumulator that are connected by an orifice, where damping is realized by the gas flow resistance through the orifice. The nonlinear suspension system model is derived and also linearized for facilitating the properties characterization. An experimental setup is also developed for validating both the formulated nonlinear and linearized models. The comparisons between the measured data and simulation results demonstrate the validity of the models under the operating conditions considered. Two suspension property measures, namely equivalent stiffness coefficient and loss factor, are further formulated.
Journal Article

Modeling Combined Braking and Cornering Forces Based on Pure Slip Measurements

2012-09-24
2012-01-1924
A novel predictable tire model has been proposed for combined braking and cornering forces, which is based on only a few pure baking and pure cornering tests. It avoids elaborate testing of all kinds of combinations of braking and side forces, which are always expensive and time consuming. It is especially important for truck or other large size tires due to the capability constraints of tire testing facilities for combined shear forces tests. In this paper, the predictive model is based on the concept of slip circle and state stiffness method. The slip circle concept has been used in the COMBINATOR model to obtain the magnitude of the resultant force under combined slip conditions; however the direction assumption used in the COMBINATOR is not suitable for anisotropic tire slip stiffness.
Technical Paper

Optimized Torque Distribution Algorithm to Improve the Energy Efficiency of 4WD Electric Vehicle

2014-09-30
2014-01-2374
This paper presents a torque distribution algorithm to improve the energy efficiency of four-wheel-drive (4WD) electric vehicles with PMSM hub motors. In order to optimize the torque distribution method, at first the motor model considering the affect of iron loss and the loss model of multi-motors drive system of 4WD electric vehicle with PMSM hub motors, which operate at straight-line condition, are established. Besides, realize the online identification of motor parameters based on the MARS, which is important for updating the loss model parameters of the motor drive system. By doing this, the ideal torque distribution ratio can be obtained from the loss model in real-time. The simulation result using different distribution algorithms shows that the optimized torque distribution algorithm based on the loss model can be useful for improving the energy efficiency.
Technical Paper

Parameter Identification of PMSM for EPS Based on an Improved MRAS Method

2014-04-01
2014-01-0271
Whether high-precision torque control or motor condition monitoring need accurate motor parameters. For the three parameters of surface-mounted permanent magnet synchronous motor (SPMSM), the voltage equation is rank-deficient. To solve this problem, some scholars proposed methods that build full rank equations with signal injection, but this will produce motor torque ripple, which is not suitable for application to the EPS. Therefore, this paper proposes a method based on MRAS to identify motor parameters step by step. The proposed two steps identification method can make the reference model full rank in every step, but the total decoupling between parameters identification processes cannot be realized for the assumption that the prior step result is the real value. It was found in experiment that this effect varies with the motor operating conditions.
Journal Article

Physical Modeling of Shock Absorber Using Large Deflection Theory

2012-04-16
2012-01-0520
In this paper, a shock absorber physical model is developed. Firstly, a rebound valve model which is based on its structure parameters is built through using the large deflection theory. The von Karman equations are introduced to discover the physical relationships between the load and the deflection of valve discs. An analytical solution of the von Karman equations is then deducted via perturbation method. Secondly, the flow equations and the pressure equations of the shock absorber operating are investigated. The relationship between fluid flow rate and pressure drop of rebound valve is analyzed based on the analytical solution of valve discs deflection. Thirdly, an inter-iterative process of flow rate and pressure drop is employed in order to adequately consider the influence of fluid flow on damping force. Finally, the physical model is validated by comparing the experimental data with the simulation output.
Technical Paper

Stability Control of Four-Wheel-Drive Electric Vehicle with Electro-Hydraulic Braking System

2014-09-28
2014-01-2539
Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
X