Refine Your Search

Topic

Search Results

Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Technical Paper

Advance Noise Path Analysis, A Robust Engine Mount Optimization Tool

2003-10-27
2003-01-3117
Many design problems are discovered often late in the development process, when design flexibility is limited. It is the art of the refinement engineers to find a solution to any unpredicted issues at this stage. The refinement process contains many hours of testing and requires many prototypes. Having an accurate experimental model of the system in this phase could reduce refinement time significantly. One of the areas that usually require refinement and tuning late in the design process is engine and body mounting systems. In this paper, we introduce a technique to optimize the mounting system of a vehicle for a given objective function using experimental/numerical analysis. To obtain an accurate model of the vehicle, we introduce an experimental procedure based upon the substructuring method. The method eliminates the need for any accurate finite element method of the vehicle. Experimental results of the implementation of this approach to a real vehicle are presented.
Technical Paper

Aero-Engine Inlet Vane Structure Optimization for Anti-Icing with Hot Air Film Using Neural Network and Genetic Algorithm

2019-06-10
2019-01-2021
An improved anti-icing design with film heating ejection slot and cover for the inlet part of aero-engine was brought out, which combines the interior jet impingement with the exterior hot air film heating and shows promising application for those parts manufactured with composite materials. A hybrid method based on the combination of the Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA) is developed to optimize the anti-icing design for a typical aero-engine inlet vane in two dimensions. The optimization aims to maximize the heating performance of the hot air film, which is assessed by the heating effectiveness. The film-heating ejection angle and the cover opening angle are the two geometric variables to be optimized. Numerical model was established and validated to generate training and testing samples for BPNN, which was used to predict the objective function and find the optimal design variables in conjunction with the GA.
Technical Paper

An Analytical Analysis on the Cross Flow in a PEM Fuel Cell with Serpentine Channel

2008-04-14
2008-01-0314
A serpentine flow channel can be considered as neighboring channels connected in series, and is one of the most common and practical channel layouts for PEM fuel cells since it ensures the removal of liquid water produced in a cell with excellent performance and acceptable parasitic load. During the reactant flows along the flow channel, it can also leak or cross directly to the neighboring channel via the porous gas diffusion layer due to the high pressure gradient caused by the short distance. Such a cross flow leads to a larger effective flow area resulting in a substantially lower amount of pressure drop in an actual PEM fuel cell compared to the case without cross flow. In this work, an analytical solution is obtained for the cross flow in a PEM fuel cell with a serpentine flow channel based on the assumption that the velocity of cross flow is linearly distributed in the gas diffusion layer between two successive U-turns.
Technical Paper

An Integrated Method for Evaluation of Seat Comfort Based on Virtual Simulation of the Interface Pressures of Driver with Different Body Sizes

2017-03-28
2017-01-0406
This paper presents an integrated method for rapid modeling, simulation and virtual evaluation of the interface pressure between driver human body and seat. For simulation of the body-seat interaction and for calculation of the interface pressure, besides body dimensions and material characteristics an important aspect is the posture and position of the driver body with respect to seat. In addition, to ensure accommodation of the results to the target population usually several individuals are simulated, whose body anthropometries cover the scope of the whole population. The multivariate distribution of the body anthropometry and the sampling techniques are usually adopted to generate the individuals and to predict the detailed body dimensions. In biomechanical modeling of human body and seat, the correct element type, the rational settings of the contacts between different parts, the correct exertion of the loads to the calculation field, etc., are also crucial.
Technical Paper

An Optimization of Suspension Linkages for Wheel-Legged Vehicle

2019-04-02
2019-01-0167
The guiding mechanism of vehicle suspension can keep the wheels moving along planned trajectory. The geometrical design of the reasonable suspension guide mechanism can reduce the vibration transmitted to the body, improve trafficability and handling stability. The vehicle suspension design method was applied to the wheel-legged vehicle, enhancing ride performance. The optimization of suspension hard points can be obtained by using single variable method, adjusting each hard point coordinate independently. It is also widely recommended by using intelligent algorithm to solve well-designed multi-objective parameter optimization function. In this study, the multi-objective parameter optimization function was solved by using the NSGA-II (Non-dominated Sorted Genetic Algorithm-II). Computer simulations with half-car model were used to support the analysis in this study. ADAMS multibody dynamics software was also used to verify the reliability of the results.
Technical Paper

Analysis of the Game-Based Human-Machine Co-steering Control on Low-Adhesion Road Surfaces

2023-12-31
2023-01-7086
With the progressing autonomy of driving technology, machine is assuming greater responsibility for driving tasks to enhance safety. Leveraging this potential, this paper introduces a novel human-machine co-steering control strategy based on model predictive control. The strategy is designed to address the difficulties faced by drivers when driving on surfaces with low adhesion. Firstly, the proposed strategy utilizes a parallel human-machine co-steering framework with a weight allocation concept between the controller and the driver. Moreover, the nonlinear controller dynamics model and linear driver dynamics model are developed to characterize the interaction behaviors between human and machine under low-adhesion road surface conditions. And a nonlinear game optimization problem is formulated to capture the cooperative interaction relationship between human and machine.
Technical Paper

Automation of Adams/Car K&C Correlation using MATLAB

2014-04-01
2014-01-0847
Physical rig testing of a vehicle is often undertaken to obtain experimental data that can be used to ensure a mathematical model is an accurate representation of the vehicle under study. Kinematics and Compliance (K&C) testing is often used for this purpose. The relationship between the hard point locations and compliance parameters, and K&C characteristics of a suspension system is complex, and so automating the process to correlate the model to the test data can make the exercise easier, faster and more accurate than hand tuning the model. In this work, such a process is developed. First, the model parameters are adjusted, next a simulation is run, before the results are read and post processed. This automation processed is used in conjunction with an optimization procedure to carry out the K&C correlation.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Combined Control Strategy for Engine Rotate Speed in the Shift Process of Automated Mechanical Transmission

2004-03-08
2004-01-0427
For the purpose of lessening fuel consumption, engine noise, shift jerk and clutch friction work in the shift process of Automatic Mechanical Transmission (AMT), a fuzzy-bang bang dual mode control strategy for engine rotate speed is put forward in this paper, which takes the advantages of time optimal control and fuzzy control. The combined control strategy is applied to the shift process control of AMT test minibus named SC6350 and proved to be successful by the experimental results.
Technical Paper

Control Synthesis for Distributed Vehicle Platoon Under Different Topological Communication Structures

2019-04-02
2019-01-0494
The wireless inter-vehicle communication provide a manner to achieve multi-vehicle cooperative driving, and the platoon of automotive vehicle can significantly improve traffic efficiency and ensure traffic safety. Previous researches mostly focus on the state of the proceeding vehicle, and transmit information from self to the succeeding vehicle. Nevertheless, this structure possesses high requirements for controller design and shows poor effect in system stability. In this paper, the state of vehicles is not only related to the information of neighbor vehicles, while V2V communication transmit information over a wide range of area. To begin with, the node dynamic model of vehicle is described by linear integrator with inertia delay and the space control strategy is proposed with different topological communication structures as BF, LBF, PBF, etc.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Damping Force Optimal Control Strategy for Semi-Active Suspension System

2024-04-09
2024-01-2286
Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Dynamic Characteristic Simulation of AT Hydraulic System

2008-06-23
2008-01-1683
Hydraulic system is very important for the performance of AT. The dynamic characteristics of automatic transmission hydraulic system are studied in this paper. Because the valves in the hydraulic system are not standard parts, ITI-SimulationX, the multi-domain physics simulation software from ITI GmbH, is used to build the dynamic model of the hydraulic system based on the basic elements in the library of SimulationX. And then the dynamic characteristics of the system are simulated. The simulation results and the test results from the test bench are compared to confirm the simulation model. The results show that the simulation model can couple with the real system very well and the simulation model can be confirmed. Based on the confirmed simulation model, the effects of different parameters of the hydraulic system on the characteristics of the system are analyzed.
Technical Paper

Emergency Steering Evasion Torque Assistance Based on Optimized Trajectory

2019-04-02
2019-01-0888
When automobile is at the threat of collisions, steering usually needs a shorter longitudinal distance than braking to avoid collision, especially at a high speed. In emergency steering evasion, the vehicle may be out of the road or colliding with obstacles ahead when the driver’s steering torque is excessive or insufficient. In view of the above problems, this paper presents an emergency steering evasion torque assistance system based on optimized trajectory. First, a feasible steering evasion area is established which treats the paths of excessive and insufficient steering as boundary conditions in this paper. An optimized trajectory is derived from the lateral acceleration of the vehicle and the time to the adjacent lane as optimization conditions. Second, a two degree of freedom vehicle model is used to represent dynamics of the vehicle.
Technical Paper

Fuzzy PID Based Optimization of Starting Control for AMT Clutch of Heavy-duty Trucks

2018-04-03
2018-01-1166
Starting control has become a troublesome issue in the developing field of the control system for heavy-duty trucks, due to the complexity of vehicle driving and the variability of driver's intention. The too fast clutch engagement may result in serious impact, influence on the comfort and fatigue life, and even the engine flameout, while the too slow clutch engagement may lead to long time of friction, the increased temperature, and accelerated wear of friction pair, as well as influence on the power performance and fatigue life[1]. Therefore, the key technique of starting control is clutch engagement control, for which the fuzzy PID based optimization of starting control for AMT clutch is proposed, with the pneumatic AMT clutch of heavy-duty trucks as the research object.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Technical Paper

High Speed Optimal Yaw Stability of Tractor-Semitrailers with Active Trailer Steering

2014-04-01
2014-01-0093
Most tractor-semitrailers are fitted with multi-axle trailers which cannot be actively steered, and such vehicles with an articulated configuration are inclined to exhibit instability such as trailer swing, jack-knifing, and rollover at high speed. Proposed in this paper is an optimal control of the yaw stability of tractor-semitrailers at high speed by applying an active trailer's steering angle. An optimal control algorithm is designed by employing a 3-DOF vehicle model in the yaw plane. The optimal linear quadratic regulator (LQR) approach is used with a cost function including sideslip angles, yaw rates of both tractor and trailer, and trailer's steering angle. The yaw stability at the high speed is also quantified by the dynamic performance measurements of lateral path deviation, hitch angle and rearward amplification (RA). The algorithm is evaluated by co-simulations using TruckSim and Matlab/Simulink softwares.
X