Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

4WID/4WIS Electric Vehicle Modeling and Simulation of Special Conditions

2011-09-13
2011-01-2158
This paper introduces the characteristics of the 4 wheel independent driving/4 wheel independent steering (4WID/4WIS) electric vehicle (EV). Models of Subsystems and the vehicle are constructed based on Matlab/simulink. The vehicle model allows the inputs of different drive torques and steer angles of four wheels. The dynamic characteristics of drive motors and steer motors are considered, and also it can reflect the vehicle longitudinal dynamics change due to the increase of the mass and inertia of the four wheels. Besides, drive mode selection function that is unique to this type vehicle is involved. Simulations and analyses of crab, oblique driving and zero radius turning which are the special conditions of 4WID/4WIS EV are conducted. The results show that the model can reflect the dynamic response characteristics. The model can be used to the simulation analyses of handling, stability, energy saving and control strategies verification of 4WID/4WIS EVs.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

A Collision Avoidance Strategy Based on Inevitable Collision State

2022-09-19
2022-01-1170
This paper proposed a collision avoidance strategy that take over the control of ego vehicle when faced with urgent collision risk. To improve the applicability of collision avoidance strategy in complex scenarios, the theory of ICS (Inevitable Collision State) is introduced to evaluate the collision risk and compute the trigger flag of the system, and vehicle dynamic is taken into account when modeling ego vehicle to predict ego vehicle’s following moving. Vehicle specific characteristics including reaction time of the braking system and the braking force increasing process are taken into account. In order to reduce injury caused by collision accidents and minimize disruption to drivers, slight steering is added on top of emergency braking. The direction of the steering angle is determined according to IM (Imitating Maneuvers) The flow chart of the strategy is presented in the paper.
Technical Paper

A Driving Simulator Study of Young Driver’s Behavior under Angry Emotion

2019-04-02
2019-01-0398
The driving behaviors of young drivers under the influence of anger are analyzed by driving simulator in this paper. A total of 12 subjects are enrolled during the experiment. Standardized videos are utilized to induce the driver's anger emotion. And the driver's electrocardiogram (ECG) signal is collected synchronously and compared before and after emotional trigger, which prove the validity of emotional trigger. Based on the result, the driver's driving performance under the straight road and the curve under normal state and angry state are compared and analyzed. The results of independent sample t-test show that there are significant differences in the running time of straight sections and the standard deviation of steering wheel angle in curves between normal and angry states. In conclusion, the longitudinal and lateral operation of drivers is unstable in angry state and the driver will be more destructive to the regular driving behavior.
Technical Paper

A Fuzzy On-Line Self-Tuning Control Algorithm for Vehicle Adaptive Cruise Control System with the Simulation of Driver Behavior

2009-04-20
2009-01-1481
Research of Adaptive Cruise Control (ACC) is an important issue of intelligent vehicle (IV). As we all known, a real and experienced driver can control vehicle's speed very well under every traffic environment of ACC working. So a direct and feasible way for establishing ACC controller is to build a human-like longitudinal control algorithm with the simulation of driver behavior of speed control. In this paper, a novel fuzzy self-tuning control algorithm of ACC is established and this controller's parameters can be tuned on-line based on the evaluation indexes that can describe how the driver consider the quality of dynamical characteristic of vehicle longitudinal dynamics. With the advantage of the controller's parameter on-line self-tuning, the computational workload from matching design of ACC controller is also efficiently reduced.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Multi-mode Control Strategy for EV Based on Typical Situation

2017-03-28
2017-01-0438
A multitude of recent studies are suggestive of the EV as a paramount representative of the NEV, its development direction is transformed from “individuals adapt to vehicles” to “vehicles serve for occupants”. The multi-mode drive control technology is relatively mature in traditional auto control sphere, however, a host of EV continues to use a single control strategy, which lacks of flexibility and diversity, little if nothing interprets the vehicle performances. Furthermore, due to the complex road environment and peculiarity of vehicle occupants that different requirement has been made for vehicle performance. To solve above problems, this paper uses the key technology of mathematical statistics process in MATLAB, such as the mean, linear fitting and discrete algorithms to clean up, screening and classification the original data in general rules, and based on short trips in the segments of kinematics analysis method to establish a representative of quintessential driving cycle.
Journal Article

A New Method for Bus Drivers' Economic Efficiency Assessment

2015-09-29
2015-01-2843
Transport vehicles consume a large amount of fuel with low efficiency, which is significantly affected by drivers' behaviors. An assessment system of eco-driving pattern for buses could identify the deficiencies of driver operation as well as assist transportation enterprises in driver management. This paper proposes an assessment method regarding drivers' economic efficiency, considering driving conditions. To this end, assessment indexes are extracted from driving economy theories and ranked according to their effect on fuel consumption, derived from a database of 135 buses using multiple regression. A layered structure of assessment indexes is developed with application of AHP, and the weight of each index is estimated. The driving pattern score could be calculated with these weights.
Technical Paper

A New Type of Electro-Hydraulic Power Steering System for Heavy-Duty Commercial Vehicles

2015-04-14
2015-01-1502
The earth's fossil energy is not limitless, and we should be taking advantage of the highly developed fields of science and technology to utilize it more efficiently and to create a fully environmentally friendly life. Considering the prodigious amount of vehicles in the world today, even a small improvement in their energy-saving performance could have a significant impact. In this paper, a new type of electro-hydraulic power steering (EHPS) system is described. It has two main advantages. First, it can significantly decrease the demand on the motor so that it can be used for a wider range of vehicles. Second, its pressure-flow characteristic can be programmed and is more flexible than hydraulic power steering (HPS) system. A prototype with a 500 W motor was applied to a truck with a front load of 2,700 kg, and static steer sweep tests were conducted to validate its feasibility.
Technical Paper

A Novel Three Steps Composited Parameter Matching Method of an Electromagnetic Regenerative Suspension System

2019-04-02
2019-01-0173
The electromagnetic regenerative suspension has attracted much attention recently due to its potential to improve ride comfort and handling stability, at the same time recover kinetic energy which is typically dissipated in traditional shock absorbers. The key components of a ball-screw regenerative suspension system are a motor, a ball screw and a nut. For this kind of regenerative suspension, its damping character is determined by the motor's torque-speed capacity, which is different from the damping character of the traditional shock absorber. Therefore, it is necessary to establish a systematic approach for the parameter matching of ball-screw regenerative suspension, so that the damping character provided by it can ensure ride comfort and handling stability. In this paper, a 2-DOF quarter vehicle simulation model with regenerative suspension is constructed. The effects of the inertia force on ride comfort and handling stability are analyzed.
Technical Paper

A Novel Three-Planetary-Gear Power-Split Hybrid Powertrain for Tracked Vehicles

2018-04-03
2018-01-1003
Tracked vehicles are widely used for agriculture, construction and many other areas. Due to high emissions, hybrid electric driveline has been applied to tracked vehicles. The hybrid powertrain design for the tracked vehicle has been researched for years. Different from wheeled vehicles, the tracked vehicle not only requires high mobility while straight driving, but also pursues strong steering performance. The paper takes the hybrid track-type dozers (TTDs) as an example and proposes an optimal design of a novel power-split powertrain for TTDs. The commercial hybrid TTD usually adopts the series hybrid powertrain, and sometimes with an extra steering mechanism, which has led to low efficiency and made the structure more complicated. The proposed three-planetary-gear power-split hybrid powertrain can overcome the problems above by utilizing the characteristics of planetary gear sets.
Technical Paper

A Prediction Model of RON Loss Based on Neural Network

2022-03-29
2022-01-0162
The RON(Research Octane Number) is the most important indicator of motor petrol, and the petrol refining process is one of the important links in petrol production. However, RON is often lost during petrol refining and RON Loss means the value of RON lost during petrol refining. The prediction of the RON loss of petrol during the refining process is helpful to the improvement of petrol refining process and the processing of petrol. The traditional RON prediction method relied on physical and chemical properties, and did not fully consider the high nonlinearity and strong coupling relationship of the petrol refining process. There is a lack of data-driven RON loss models. This paper studies the construction of the RON loss model in the petrol refining process.
Technical Paper

A Rolling Prediction-Based Multi-Scale Fusion Velocity Prediction Method Considering Road Slope Driving Characteristics

2023-12-20
2023-01-7063
Velocity prediction on hilly road can be applied to the energy-saving predictive control of intelligent vehicles. However, the existing methods do not deeply analyze the difference and diversity of road slope driving characteristics, which affects prediction performance of some prediction method. To further improve the prediction performance on road slope, and different road slope driving features are fully exploited and integrated with the common prediction method. A rolling prediction-based multi-scale fusion prediction considering road slope transition driving characteristics is proposed in this study. Amounts of driving data in hilly sections were collected by the advanced technology and equipment. The Markov chain model was used to construct the velocity and acceleration joint state transition characteristics under each road slope transition pair, which expresses the obvious driving difference characteristics when the road slope changes.
Technical Paper

A Stochastic Energy Management Strategy for Fuel Cell Hybrid Vehicles

2007-01-23
2007-01-0011
An energy management strategy is needed to optimally allocate the driver's power demands to different power sources in the fuel cell hybrid vehicles. The driver's power demand is modelled as a Markov process in which the transition probabilities are estimated on the basis of the observed sample paths. The Markov Decision Process (MDP) theory is applied to design a stochastic energy management strategy for fuel cell hybrid vehicles. This obtained control strategy was then tested on a real time simulation platform of the fuel cell hybrid vehicles. In comparison to the other 3 strategies, the constant bus voltage strategy, the static optimization strategy and the dynamic programming strategy, simulations in the Beijing bus driving cycle demonstrate that the obtained stochastic energy management strategy can achieve better performance in fuel economy in the same demand of dynamic.
Technical Paper

A Study of LPG Lean Burn for a Small SI Engine

2002-10-21
2002-01-2844
This paper presents a study of LPG lean burn in a motorcycle SI engine. The lean burn limits are compared by several ways. The relations of lean burn limit with the parameters, such as engine speed, compression ratio and advanced spark ignition etc. are tested. The experimental results show that larger throttle opening, lower engine speed, earlier spark ignition timing, larger electrode gap and higher compression ratio will extend the lean burn limit of LPG. The emission of a LPG engine, especially on NOx emission, can be significantly reduced by means of the lean burn technology.
Technical Paper

A Study on Combustion and Emission Characteristics of an Ammonia-Biodiesel Dual-Fuel Engine

2024-04-09
2024-01-2369
Internal combustion engines, as the dominant power source in the transportation sector and the primary contributor to carbon emissions, face both significant challenges and opportunities in the context of achieving carbon neutral goal. Biofuels, such as biodiesel produced from biomass, and zero-carbon fuel ammonia, can serve as alternative fuels for achieving cleaner combustion in internal combustion engines. The dual-fuel combustion of ammonia-biodiesel not only effectively reduces carbon emissions but also exhibits promising combustion performance, offering a favorable avenue for future applications. However, challenges arise in the form of unburned ammonia (NH3) and N2O emissions. This study, based on a ammonia-biodiesel duel-fuel engine modified from a heavy-duty diesel engine, delves into the impact of adjustments in the two-stage injection strategy on the combustion and emission characteristics.
Technical Paper

A Time-triggered CAN Network and Test Platform for Fuel Cell Bus

2008-06-23
2008-01-1534
As vehicle systems constantly grow in complexity and are subject to higher demands on performance, distributed control has become mainstream application in automotive industry. In a distributed control system, communication network connecting local controllers plays an important role. In this article, a fuel cell bus control system under development is introduced first. And then, traditional CAN and TTCAN network are analyzed for real-time performance respectively and TTCAN is chosen for its superiority. Subsequently, a TTCAN network is designed and implemented. Finally, a test platform for TTCAN network is devised and relevant platform experiments and on-board validation on the network are discussed.
Technical Paper

A Topological Map-Based Path Coordination Strategy for Autonomous Parking

2019-04-02
2019-01-0691
This paper proposed a path coordination strategy for autonomous parking based on independently designed parking lot topological map. The strategy merges two types of paths at the three stages of path planning, to determinate mode switching timing between low-speed automated driving and automated parking. Firstly, based on the principle that parking spaces should be parallel or vertical to a corresponding path, a topological parking lot map is designed by using the point cloud data collected by LiDAR sensor. This map is consist of road node coordinates, adjacent matrix and parking space information. Secondly, the direction and lateral distance of the parking space to the last node of global path are used to decide parking type and direction at parking planning stage. Finally, the parking space node is used to connect global path and parking path at path coordination stage.
Journal Article

Accurate Pressure Control Based on Driver Braking Intention Identification for a Novel Integrated Braking System

2021-04-06
2021-01-0100
With the development of intelligent and electric vehicles, higher requirements are put forward for the active braking and regenerative braking ability of the braking system. The traditional braking system equipped with vacuum booster has difficulty meeting the demand, therefore it has gradually been replaced by the integrated braking system. In this paper, a novel Integrated Braking System (IBS) is presented, which mainly contains a pedal feel simulator, a permanent magnet synchronous motor (PMSM), a series of transmission mechanisms, and the hydraulic control unit. As an integrative system of mechanics-electronics-hydraulics, the IBS has complex nonlinear characteristics, which challenge the accurate pressure control. Furthermore, it is a completely decoupled braking system, the pedal force doesn’t participate in pressure-building, so it is necessary to precisely identify driver’s braking intention.
X