Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A Comparison of the Behaviors of Steel and GFRP Hat-Section Components under Axial Quasi-Static and Impact Loading

2015-04-14
2015-01-1482
Hat-sections, single and double, made of steel are frequently encountered in automotive body structural components. These components play a significant role in terms of impact energy absorption during vehicle crashes thereby protecting occupants of vehicles from severe injury. However, with the need for higher fuel economy and for compliance to stringent emission norms, auto manufacturers are looking for means to continually reduce vehicle body weight either by employing lighter materials like aluminum and fiber-reinforced plastics, or by using higher strength steel with reduced gages, or by combinations of these approaches. Unlike steel hat-sections which have been extensively reported in published literature, the axial crushing behavior of hat-sections made of fiber-reinforced composites may not have been adequately probed.
Technical Paper

A Hybrid System Solution of the Interrupt Latency Compatibility Problem

1999-03-01
1999-01-1099
Microprocessors and microcontrollers are now widely used in automobiles. Microprocessor systems contain sources of interrupt and interrupt service routines, which are software components executed in response to the assertion of an interrupt in hardware. A major problem in designing the software of microprocessor systems is the analytical treatment of interrupt latency. Because multiple interrupt service routines are executed on the same CPU, they compete for the CPU and interfere with each other's latency requirements. Here, interrupt latency is defined as the delay between the assertion of the interrupt in hardware and the start of execution of the associated interrupt service routine. It is estimated that 80% of intermittent bugs in small microprocessor software loads are due to improper treatment of interrupts. Until this work, there is no analytic method for analyzing a particular system to determine if it may violate interrupt latency requirements.
Journal Article

A Lane-Changing Decision-Making Method for Intelligent Vehicle Based on Acceleration Field

2018-04-03
2018-01-0599
Taking full advantage of available traffic environment information, making control decisions, and then planning trajectory systematically under structured roads conditions is a critical part of intelligent vehicle. In this article, a lane-changing decision-making method for intelligent vehicle is proposed based on acceleration field. Firstly, an acceleration field related to relative velocity and relative distance was built based on the analysis of braking process, and acceleration was taken as an indicator of safety evaluation. Then, a lane-changing decision method was set up with acceleration field while considering driver’s habits, traffic efficiency and safety. Furthermore, velocity regulation was also introduced in the lane-changing decision method to make it more flexible.
Technical Paper

A New Ignition Delay Formulation Applied to Predict Misfiring During Cold Starting of Diesel Engines

2000-03-06
2000-01-1184
A new formulation is developed for the ignition delay (ID) in diesel engines to account for the effect of piston motion on the global autoignition reaction rates. A differentiation is made between the IDe measured in engines and IDv, measured in constant volume vessels. In addition, a method is presented to determine the coefficients of the IDe correlation from actual engine experimental data. The new formulation for IDe is applied to predict the misfiring cycles during the cold starting of diesel engines at different low ambient temperatures. The predictions are compared with experimental results obtained on a multi-cylinder heavy-duty diesel engine.
Technical Paper

A Novel Three-Planetary-Gear Power-Split Hybrid Powertrain for Tracked Vehicles

2018-04-03
2018-01-1003
Tracked vehicles are widely used for agriculture, construction and many other areas. Due to high emissions, hybrid electric driveline has been applied to tracked vehicles. The hybrid powertrain design for the tracked vehicle has been researched for years. Different from wheeled vehicles, the tracked vehicle not only requires high mobility while straight driving, but also pursues strong steering performance. The paper takes the hybrid track-type dozers (TTDs) as an example and proposes an optimal design of a novel power-split powertrain for TTDs. The commercial hybrid TTD usually adopts the series hybrid powertrain, and sometimes with an extra steering mechanism, which has led to low efficiency and made the structure more complicated. The proposed three-planetary-gear power-split hybrid powertrain can overcome the problems above by utilizing the characteristics of planetary gear sets.
Technical Paper

A Practical Approach for Cross-Functional Vehicle Body Weight Optimization

2011-04-12
2011-01-1092
The goal of optimization in vehicle design is often blurred by the myriads of requirements belonging to attributes that may not be quite related. If solutions are sought by optimizing attribute performance-related objectives separately starting with a common baseline design configuration as in a traditional design environment, it becomes an arduous task to integrate the potentially conflicting solutions into one satisfactory design. It may be thus more desirable to carry out a combined multi-disciplinary design optimization (MDO) with vehicle weight as an objective function and cross-functional attribute performance targets as constraints. For the particular case of vehicle body structure design, the initial design is likely to be arrived at taking into account styling, packaging and market-driven requirements.
Technical Paper

A Stochastic Energy Management Strategy for Fuel Cell Hybrid Vehicles

2007-01-23
2007-01-0011
An energy management strategy is needed to optimally allocate the driver's power demands to different power sources in the fuel cell hybrid vehicles. The driver's power demand is modelled as a Markov process in which the transition probabilities are estimated on the basis of the observed sample paths. The Markov Decision Process (MDP) theory is applied to design a stochastic energy management strategy for fuel cell hybrid vehicles. This obtained control strategy was then tested on a real time simulation platform of the fuel cell hybrid vehicles. In comparison to the other 3 strategies, the constant bus voltage strategy, the static optimization strategy and the dynamic programming strategy, simulations in the Beijing bus driving cycle demonstrate that the obtained stochastic energy management strategy can achieve better performance in fuel economy in the same demand of dynamic.
Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Technical Paper

A Visualization Study of Liquid Fuel Distribution and Combustion Inside a Port-Injected Gasoline Engine Under Different Start Conditions

2000-03-06
2000-01-0242
High-speed video of combustion processes and cylinder pressure traces were obtained from a single-cylinder optical-accessible engine with a production four-valve cylinder head to study the mixture formation and flame propagation characteristics at near-stoichiometric start condition. Laser-sheet Mie-scattering images were collected for liquid droplet distributions inside the cylinder to correlate the mixture formation process with the combustion results. A dual-stream (DS) injector and a quad-stream (QS) injector were used to study the spray dispersion effect on engine starting, under different injection timings, throttle valve positions, engine speeds, and intake temperatures. It was found that most of the fuel under open-valve injection (OVI) conditions entered the cylinder as droplet mist. A significant part of the fuel droplets hit the far end of the cylinder wall at the exhaust-valve side.
Technical Paper

Active Damping Control of Torsional Vibration in a Diesel Hybrid Powertrain

2019-12-19
2019-01-2342
This paper has designed a real time control algorithm to use ISG motor actively compensate the torque ripple produced by the engine, to reduce torsional vibration. This paper consists of 3 parts. In the first section, this paper has introduced the research object and its modification for experiments. Then the development of control strategy is presented. The engine dynamic model is built, and real-time control with a feedforward unit and a feedback unit is derived. Encoder and cylinder pressure is used for engine torque estimator. Then the ISG motor output the counter-waveform to make the overall output smooth. In order to verify the effectiveness of the control strategy, the final section has established a test bench, where two experiments are carried out. One of the experimental conditions is to set the engine at a constant operating point, while the other is to crank the engine from 0 rpm to idle speed with ISG motor.
Technical Paper

Advanced Low Temperature Combustion (ALTC): Diesel Engine Performance, Fuel Economy and Emissions

2008-04-14
2008-01-0652
The objective of this work is to develop a strategy to reduce the penalties in the diesel engine performance, fuel economy and HC and CO emissions, associated with the operation in the low temperature combustion regime. Experiments were conducted on a research high speed, single cylinder, 4-valve, small-bore direct injection diesel engine equipped with a common rail injection system under simulated turbocharged conditions, at IMEP = 3 bar and engine speed = 1500 rpm. EGR rates were varied over a wide range to cover engine operation from the conventional to the LTC regime, up to the misfiring point. The injection pressure was varied from 600 bar to 1200 bar. Injection timing was adjusted to cover three different LPPCs (Location of the Peak rate of heat release due to the Premixed Combustion fraction) at 10.5° aTDC, 5 aTDC and 2 aTDC. The swirl ratio was varied from 1.44 to 7.12. Four steps are taken to move from LTC to ALTC.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Journal Article

An Efficient Path Planning Methodology Based on the Starting Region Selection

2020-04-14
2020-01-0118
Automated parking is an efficient way to solve parking difficulties and path planning is of great concern for parking maneuvers [1]. Meanwhile, the starting region of path planning greatly affects the parking process and efficiency. The present research of the starting region are mostly determined based on a single algorithm, which limits the flexibility and efficiency of planning feasible paths. This paper, taking parallel parking and vertical parking for example, proposes a method to calculate the starting region and select the most suitable path planning algorithm for parking, which can improve the parking efficiency and reduce the complexity. The collision situations of each path planning algorithm are analyzed under collision-free conditions based on parallel and vertical parking. The starting region for each algorithm can then be calculated under collision-free conditions.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

Analysis of Energy Consumption on Typical Main Cylinder Booster Based Brake-by-Wire System

2016-09-18
2016-01-1955
The traditional vacuum booster is gradually replaced by Brake-by-Wire system (BBW) in modern passenger car, especially Electric Vehicle (EV). Some mechanical and hydraulic components are replaced by electronic components in Brake-by-Wire system. Using BBW system in modern passenger vehicles can not only improve the automotive safety performance, reliability and stability, but also promote vehicle maneuverability, comfort, fuel economy and environmental protection. Although vehicle's braking performance is greatly improved by using BBW, the system will inevitably consume some energy of the vehicle power supply, thus introducing unexpected drawback in comparison with the traditional vacuum assist braking system, since it doesn't need any electric power. Therefore, the analysis of energy consumption on typical main cylinder booster based BBW system under typical driving cycles will contribute to advanced design of current advanced braking system.
Technical Paper

Autoignition and Combustion of ULSD and JP8 during Cold Starting of a High Speed Diesel Engine

2017-03-28
2017-01-0797
Cold starting problems of diesel engines are caused mainly by the failure of the auto-ignition process or the subsequent combustion of the rest of the charge. The problems include long cranking periods and combustion instability leading to an increase in fuel consumption in addition to the emission of undesirable unburned hydrocarbons which appear in the exhaust as white smoke. The major cause of these problems is the low temperature and pressure of the charge near the end of the compression stroke and/or the poor ignition quality of the fuel. This paper presents the results of an experimental investigation of cold starting of a high speed diesel engine with ULSD (Ultra Low Sulphur Diesel) and JP8 (Jet Propulsion) fuels at ambient temperature (25°C). A detailed analysis is made of the autoignition and combustion of the two fuels in the first few cycles in the cold start transient. In addition, a comparison is made between these processes for the two fuels during idle operation.
X