Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

Design and Optimization of an SUV Engine Compartment Bottom Shield Based on Kriging Interpolation and Multi-Island Genetic Algorithm

2022-03-29
2022-01-0172
Engine compartment thermal management can achieve energy saving and emission reduction. The structural design of the components in the engine compartment affects the thermal fluid flow performance, which in turn affects the thermal management performance. In this paper, based on the phenomenon that the surface of the parts in the engine compartment is abnormally high due to design defects of an SUV engine compartment bottom shield, the engine compartment is modeled and analyzed by CFD using the software STAR-CCM+. It is not conducive to the heat dissipation, so the bottom shield needs to be redesigned. To redesign the shape of the bottom shield, four dimensions and one coordinate value were selected as the design parameters, and the oil pan maximum surface temperature was selected as the optimization target. The Latin hypercube sampling method was used to sample the space uniformly, and the experimental design plan was constructed and simulated.
Technical Paper

Research and 3-Dimensional Numerical Simulation about Internal Air Transient Flow Process and Air Flow-Induced Noise of Engine Electronic Control Throttle Quick-Opening Process

2018-04-03
2018-01-0470
Based on the basic structure and operating function of engine throttle, according to the actual structure of throttle, a 3-dimensional air transient flow is simulated to realize throttle rotated from closed position to opened position by using CFD moving mesh technology and user defined program. By applying CFD and CAA coupling method, the influence of the movement of throttle on air flow and flow-induced noise process are studied, the transient opening process is studied and analyzed. The velocity field, pressure field and the principle of flow-induced noise are analyzed under different rotational angle velocity of throttle.
Technical Paper

Study and Analysis on 3-Dimensional Simulation of the Transient Flow Process of Engine Electronic Control Throttle

2024-04-09
2024-01-2417
Based on the basic structure and operation function of engine throttle, according to the actual structure of a throttle, a 3-dimensional simulation of the transient airflow during the rotation of the throttle from the closed position to the fully open position is realized by using CFD together with the moving mesh technology and the user-defined program. The influence of the throttle movement on the airflow process is studied. The velocity field, pressure field, and flow noise field are analyzed at different angles of throttle rotation. The numerical simulation results show that at the beginning period of the throttle rotation, the vortex appears in the flow field behind the throttle, and the drop of the air pressure between the upstream and downstream position of the throttle is sharp.
X