Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of the Catalytic Reduction of NOx in Diesel Exhaust

1996-10-01
962042
Reduction of nitrogen oxides in Diesel exhaust gas is a challenging task. This paper reports results from an extensive study using Pt-based catalysts involving synthetic gas activity testing (SCAT), engine bench testing and tests on passenger cars. Preliminary SCAT work highlighted the importance of Pt-dispersion, and both SCAT and bench engine testing yielded comparable NOx conversions under steady state conditions at high HC:NOx ratios. On passenger cars in the European cycle without secondary fuel injection NOx conversion was lower than obtained in the steady state tests. Better conversion was obtained in the FTP cycle, where secondary injection was employed. Higher HC:NOx, ratios and more favourable temperature conditions which were present in the exhaust contributed to this higher conversion.
Technical Paper

Advanced Three-Way Catalyst Formulations for High Temperature Applications

1993-03-01
930076
Enhancements in the thermal stability of three-way catalysts have been achieved by: 1) developing improved methods for the incorporation of ceria into catalyst formulations and 2) identifying a proprietary stabilizer which reduces the rate of ceria sintering at high temperature. Improvements in thermal stability are demonstrated by comparing the FTP and engine dynamometer performance of new formulations with a standard formulation after aging on several high temperature engine dynamometer cycles.
Technical Paper

Ambient Temperature Light-off Aftertreatment System for Meeting ULEV Emission Standards

1998-02-23
980421
It has long been recognized that the key to achieving stringent emission standards such as ULEV is the control of cold-start hydrocarbons. This paper describes a new approach for achieving excellent cold-start hydrocarbon control. The most important component in the system is a catalyst that is highly active at ambient temperature for the exothermic CO oxidation reaction in an exhaust stream under net lean conditions. This catalyst has positive order kinetics with respect to CO for CO oxidation. Thus, as the concentration of CO in the exhaust is increased, the rate of this reaction is increased, resulting in a faster temperature rise over the catalyst.
Technical Paper

An Evaluation of the Long Term Effects of Gasoline Sulphur Level on Three-Way Catalyst Activity

1995-10-01
952421
A test programme has been conducted to study any potential long term effects of gasoline sulphur on catalyst performance, using a newly developed transient engine-bed ageing cycle. The ageing cycle, which was based on repeated European Extra Urban Drive Cycles, was chosen to ensure that the catalyst experienced a realistically wide range of temperatures and space velocities, together with transients, idle and periods of overrun. Two nominally identical platinum/rhodium catalysts (manufactured from the same batch) with matched lambda sensors, were aged for a period of 80,000 km each, one being aged using a gasoline containing 50 mg/kg (ppm wt) sulphur, the other being aged on the same fuel doped to 450 ppm wt S. The emissions performance of both catalysts was measured after 6,000, 40,000 and 80,000 km ageing, by fitting the catalysts to a test vehicle, and performing emissions tests over the European test cycle at both sulphur levels.
Technical Paper

Catalyst Improvements to Meet European Stage III and ULEV Emissions Criteria

1996-02-01
960799
This paper describes the use of advanced three-way catalysts to meet future European and California low emissions legislation. Firstly, it describes the performance of these catalysts tested using the European Stage II test cycle and contrasts their emissions performance over the proposed European Stage III test. The future legislation requires fast catalyst light-off for the low emissions standards to be achieved, therefore the performance of close-coupled catalysts was investigated. The close-coupled catalyst systems gave very low emissions. Space constraints often preclude the use of large volume close-coupled catalysts, and the combination of a small starter catalyst with an underfloor catalyst was tested. This gave performance levels better than the close-coupled configuration. The effect of reducing the underfloor catalyst volume is also described. The work was carried out on a 1.2 litre European Vehicle, the conclusions were verified on a 1.6 litre European vehicle.
Technical Paper

Catalyst-Based BS VI Stage 2 Emission Control Solutions for Light Duty Diesel

2019-01-09
2019-26-0141
Various types of after-treatment system for BS VI Stage 1 are being assessed for the Light Duty Diesel (LDD) segment. For BS VI Stage 2, Real Driving Emission (RDE) assessment will be newly introduced, which will require more robustness in emission control system capability. Although the detailed requirements for India BS VI stage 2 are still being discussed, a reasonable assumption is that similar systems to those being developed for Euro 6d, will work for India BS VI. This paper describes typical system designs for Euro 6d and also reveals newly developed SCRF® (Selective Catalytic Reduction Filter) based systems, which demonstrate excellent RDE emissions. In addition, newly developed Lean NOx Trap (NSC) coatings, which focus on low temperature NOx control used with SCRF® (NSC + SCRF®) also show excellent emission control capability as demonstrated in this case on the ARTEMIS Cycle. These systems have potential as promising LDD solutions for India BS VI stage 2.
Technical Paper

Comparison of De-NOx and Adsorber Catalysts to Reduce NOx - Emissions of Lean Burn Gasoline Engines

1996-10-01
962046
A comparison of two different types of NOx reducing catalysts will be worked out. The potential of two De-NOx catalysts using engine out hydrocarbon emissions for NOx conversion will be shown by variation of different engine parameters. An analysis of the hydrocarbon species upstream and downstream catalyst will demonstrate, which components are responsible for the NOx reduction in the exhaust gas of a lean burn engine. By variation of different parameters during adsorbtion and regeneration phases of the adsorber catalyst the efficiency in NOx reduction will be optimized. An assessment of the suitability for lean burn engines will consider the emission reduction efficiency as well as the influence on engine fuel consumption.
Technical Paper

Development of Advanced Metallic Substrate Design for Close Coupled Converter Application

2007-04-16
2007-01-1262
The implementations of the Tier 2 and LEVII emission levels require fast catalyst light-off and fast closed loop control through high-speed engine management. The paper describes the development of innovative catalyst designs. During the development thermal and mechanical boundary conditions were collected and component tests conducted on test rigs to identify the emission and durability performance. The products were evaluated on a Super Imposed Test Setup (SIT) where thermal and mechanical loads are applied to the test piece simultanously and results are compared to accelerated vehicle power train endurance runs. The newly developed light-off catalyst with Perforated Foil Technology (PE) showed superior emission light-off characteristic and robustness.
Technical Paper

Development of Advanced Three-Way Catalysts that Enable Low PGM Loadings for Future Mercosur Emissions Legislation

2002-11-19
2002-01-3551
This paper describes the development of new high performance three-way catalyst (TWC) formulations with improved activity and enhanced thermal stability. These new TWC formulations enable the converter to be fitted closer to the engine and allow this future legislation to be met with catalysts using PGM levels significantly lower than those currently being employed. The performance benefits of these advanced platinum- and palladium-based catalysts are demonstrated on a number of different vehicles after bench-engine ageing.
Technical Paper

Development of Test Methods for Lean-NOx Catalyst Evaluation

1995-10-01
952489
A test method, based on parallel sample testing with exhaust fuel injection and certain test procedures, has been developed for diesel lean-NOx catalyst evaluation purposes. The results of the verification tests show uniform distribution of both the exhaust gas and the injected fuel, and a high degree of fuel evaporation. Test procedures are discussed from several points of view. The test method offers a precise and efficient way of testing lean-NOx catalysts on heavy duty diesel engines.
Technical Paper

Effect of Flow Distribution on Emissions Performance of Catalytic Converters

1998-02-23
980936
The emissions performance of catalytic converters under different conditions of flow distribution was investigated. Computational Fluid Dynamics methods were utilised to model the maldistribution effects of different inlet cones. The effects of maldistribution on ageing, light-off and conversion were investigated using steady state tests on an engine bench. Emission testing was also conducted on a vehicle throughout ECE and EUDC test cycles. Maldistribution was found to have a significant effect on the efficiency of the catalyst during the early stages of the ECE cycle for both fresh and aged catalysts. The effects were less significant over later stages of the ECE cycle and throughout the EUDC except NOx where maldistribution did have an effect on the conversion at higher flow rates during the later stages of the test.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
Technical Paper

FTP and US06 Performance of Advanced High Cell Density Metallic Substrates as a Function of Varying Air/Fuel Modulation

2003-03-03
2003-01-0819
The influence of catalyst volume, cell density and precious metal loading on the catalyst efficiency were investigated to design a low cost catalyst system. In a first experiment the specific loading was kept constant for a 500cpsi and a 900cpsi substrate. In a second experiment the palladium loading was reduced on the 900cpsi substrate and the same PM loading was applied to a 1200cpsi substrate with lower volume. Finally the loading was further reduced for the 1200cpsi substrate. The following parameters were studied after aging: Catalyst performance of standard cell density compared to high cell density technology Light-off performance and catalyst efficiency as a function of Palladium loading and substrate cell density Catalyst efficiency as a function of AFR biasing The performance of the aged catalysts was investigated in a lambda sweep test and in light-off tests at an engine bench.
Technical Paper

Field Test Trucks Fulfilling EPA'07 Emission Levels On-Road by Utilizing the Combined DPF and Urea-SCR System

2006-04-03
2006-01-0421
Two campaigns measuring on-road emissions of 23 VN-trucks on a randomly chosen driving cycle, consisting of 10 miles two-lane and 8 miles four-lane road were performed. The first, during October 2004, showed tailpipe NOx emissions on fleet average of 1.06 g/bhp-hr including the time the exhaust gas temperature was below 200°C. The second, during June 2005, showed tailpipe NOx emissions on fleet average of 1.13 g/bhp-hr including the time the exhaust gas temperature was below 200°C. Complementary measurements in a SET-cycle (13 point OICA-cycle) on a chassis dynamometer showed a tailpipe emission of 0.008 g PM per bhp-hr. Moreover, cost analysis show that the diesel fuel consumption remains unchanged whether the truck running on ULSD is equipped with a Combined Exhaust gas AfterTreatment System (CEATS) installed or not.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-To-Liquid Fuel and Catalyzed Diesel Particle Filters

2004-10-25
2004-01-2959
A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT™ diesel particulate filter. No engine modifications were made. Bench scale fuel-engine compatibility testing showed the GTL fuel had cold flow properties suitable for year-round use in southern California and was additized to meet current lubricity standards. Bench scale elastomer compatibility testing returned results similar to those of CARB specification diesel fuel. The GTL fuel met or exceeded ASTM D975 fuel properties. Researchers used a chassis dynamometer to test emissions over the City Suburban Heavy Vehicle Route (CSHVR) and New York City Bus (NYCB) cycles.
Technical Paper

High Performance Advanced Three-way Catalysts For The Proposed 2004 And 2008 Mercosur Emissions Standards

2000-12-01
2000-01-3303
Recently, significantly more demanding emissions standards for the Mercosur region were proposed, and the intention is that these will be introduced in 2004 and 2008. This paper describes the development of new high performance three-way catalyst formulations for conventional gasoline/gasohol fueled engines that enables them to meet these stringent standards without increasing the content of platinum group metals above the levels currently employed. The performance benefits of these advanced platinum and palladium-based catalysts are demonstrated on both engine bench and vehicles.
Technical Paper

Investigations into NOx Aftertreatment with Urea SCR for Light-Duty Diesel Vehicles

2001-09-24
2001-01-3624
Future US emissions limits are likely to mean a sophisticated nitrogen oxide (NOx) reduction technique is required for all vehicles with a diesel engine, which is likely to be either NOx trap or selective catalytic reduction (SCR) technology. To investigate the potential of SCR for NOx reduction on a light duty vehicle, a current model vehicle (EUII M1 calibration), of inertia weight 1810 kg, was equipped with an urea-based SCR injection system and non-vanadium, non-zeolitic SCR catalysts. To deal with carbon monoxide (CO), hydrocarbon (HC) and volatile organic fraction (VOF), a diesel oxidation catalyst was also incorporated into the system for most tests. Investigations into the effect of placing the oxidation catalyst at different positions in the system, changing the volume of the SCR catalysts, increasing system temperature through road load changes, varying the SCR catalyst composition, and changing the urea injection calibration are discussed.
Journal Article

New Methodology for Transient Engine Rig Experiments for Efficient Parameter Tuning

2013-12-20
2013-01-9043
When performing catalyst modeling and parameter tuning it is desirable that the experimental data contain both transient and stationary points and can be generated over a short period of time. Here a method of creating such concentration transients for a full scale engine rig system is presented. The paper describes a valuable approach for changing the composition of engine exhaust gas going to a DOC (or potentially any other device) by conditioning the exhaust gas with an additional upstream DOC and/or SCR. By controlling the urea injection and the DOC bypass a wide range of exhaust compositions, not possible by only controlling the engine, could be achieved. This will improve the possibilities for parameter estimation for the modeling of the DOC.
Technical Paper

Nickel-Free Hydrogen Sulfide Control Technology for European Applications

1993-03-01
930777
In the USA, hydrogen sulfide emissions from three-way catalytic converter-equipped automobiles are effectively suppressed by the addition of nickel to catalyst formulations. This approach is generally not utilized in catalyst formulations for Europe because of European concern about the health, safety and environmental issues surrounding the use of nickel. A modified form of iron oxide has been identified which suppresses hydrogen sulfide emissions from three-way catalysts. This suppression has been achieved without affecting the fresh or aged performance of the catalyst, a problem often encountered with other materials. The performance and durability of catalyst formulations incorporating the new material are demonstrated with a variety of aging and evaluation protocols.
X