Refine Your Search

Topic

Search Results

Journal Article

A Batch Blending System for Continuous Production of Multi-Component Fuel Blends for Engine Laboratory Tests

2020-09-15
2020-01-2153
The increased rates of research on complex fuel blends in engine applications poses a need for more efficient and accurate fuel blending processes in engine laboratories. Making the fuel blending process automatic, effective, accurate and flexible saves time, storage space and cost without compromising the tests of future fuel alternatives. To meet these requirements, an automatic fuel blending system, following a sequential batch process, was designed and tested for engine laboratory application. The fuel blending system was evaluated in terms of functionality, safety, accuracy and repeatability. The functionality and safety was evaluated through a risk analysis. Whereas, the accuracy and repeatability of the system was investigated through blend preparation tests. The results show that the minimum fuel mass limitation of the system is 0.5 kg. This allows for blends with fuel ratios as low as 7 vol-% to be prepared by the system.
Journal Article

A Compact Silencer for the Control of Compressor Noise

2014-06-30
2014-01-2060
Current trends for IC-engines are driving the development of more efficient engines with higher specific power. This is true for both light and heavy duty vehicles and has led to an increased use of super-charging. The super-charging can be both in the form of a single or multi-stage turbo-charger driven by exhaust gases, or via a directly driven compressor. In both cases a possible noise problem can be a strong Blade Passing Frequency (BPF) typically in the kHz range and above the plane wave range. In this paper a novel type of compact dissipative silencer developed especially to handle this type of problem is described and optimized. The silencer is based on a combination of a micro-perforated (MPP) tube backed by a locally reacting cavity. The combined impedance of micro-perforate and cavity is chosen to match the theoretical optimum known as the Cremer impedance at the mid-frequency in the frequency range of interest.
Technical Paper

A Comparison of On-Engine Surge Detection Algorithms using Knock Accelerometers

2017-10-08
2017-01-2420
On-engine surge detection could help in reducing the safety margin towards surge, thus allowing higher boost pressures and ultimately low-end torque. In this paper, experimental data from a truck turbocharger compressor mounted on the engine is investigated. A short period of compressor surge is provoked through a sudden, large drop in engine load. The compressor housing is equipped with knock accelerometers. Different signal treatments are evaluated for their suitability with respect to on-engine surge detection: the signal root mean square, the power spectral density in the surge frequency band, the recently proposed Hurst exponent, and a closely related concept optimized to detect changes in the underlying scaling behavior of the signal. For validation purposes, a judgement by the test cell operator by visual observation of the air filter vibrations and audible noises, as well as inlet temperature increase, are also used to diagnose surge.
Technical Paper

A Novel Design for Cruiser Type Motorcycle Silencer Based on Micro-Perforated Elements

2012-10-23
2012-32-0109
Regulations stipulating the design of motorcycle silencers are strict, especially when the unit incorporates fibrous absorbing materials. Therefore, innovative designs substituting such materials while still preserving acceptable level of characteristic sound are currently of interest. Micro perforated elements are innovative acoustic solutions, which silencing effect is based on the dissipation of the acoustic wave energy in a pattern of sub-millimeter apertures. Similarly to fibrous materials the micro-perforated materials have been proved to provide effective sound absorption in a wide frequency range. Additionally, the silencer is designed as a two-stage system that provides an optimal solution for a variety of exploitation conditions. In this paper a novel design for a cruiser type motorcycle silencer, based on micro-perforated elements, is presented.
Technical Paper

A Steady-State Based Investigation of Automotive Turbocharger Compressor Noise

2018-06-13
2018-01-1528
The challenging problem of noise generation and propagation in automotive turbocharging systems is of real interest from both scientific and practical points of view. Robust and fast steady-state fluid flow calculations, complemented by acoustic analogies can represent valuable tools to be used for a quick assessment of the problem during e.g. design phase, and a starting point for more in-depth future unsteady calculations. Thus, as a part of the initial phase of a long-term project, a steady-state Reynolds Averaged Navier-Stokes (RANS) flow analysis is carried out for a specific automotive turbocharger compressor geometry. Acoustic data are extracted by means of aeroacoustics models available within the framework of the STAR-CCM+ solver (i.e. Curle and Proudman acoustic analogies, respectively).
Technical Paper

AD-EYE: A Co-Simulation Platform for Early Verification of Functional Safety Concepts

2019-04-02
2019-01-0126
Automated Driving is revolutionizing many of the traditional ways of operation in the automotive industry. The impact on safety engineering of automotive functions is arguably one of the most important changes. There has been a need to re-think the impact of the partial or complete absence of the human driver (in terms of a supervisory entity) in not only newly developed functions but also in the qualification of the use of legacy functions in new contexts. The scope of the variety of scenarios that a vehicle may encounter even within a constrained Operational Design Domain, and the highly dynamic nature of Automated Driving, mean that new methods such as simulation can greatly aid the process of safety engineering.
Technical Paper

Acoustical Methods for Investigating Turbocharger Flow Instabilities

2013-05-13
2013-01-1879
In order to increase the internal combustion engine efficiency turbocharging is today widely used. The trend, in modern engine technology, is towards higher boost pressures while keeping the combustion pressure raise relatively small. The turbocharger surge occurs if the pressure at the outlet of the compressor is greater than it can maintain, i.e., a reverse flow will be induced. In presence of such flow conditions instabilities will occur which can couple to incident acoustic (pressure) waves and amplify them. The main objective of the present work is to propose a novel method for investigation of turbocharger flow instabilities or surge precursors. The method is based on the determination of the acoustic two-port data. The active part of this data describes the sound generation and the passive part the scattering of sound. The scattering data will contain information about flow-acoustic interaction and amplification of sound that could occur close to surge.
Technical Paper

Agglomeration and Nucleation of Non-Volatile Particles in a Particle Grouping Exhaust Pipe of a Euro VI Heavy-Duty Diesel Engine

2019-01-15
2019-01-0044
The possibility of non-volatile particle agglomeration in engine exhaust was experimentally examined in a Euro VI heavy duty engine using a variable cross section agglomeration pipe, insulated and double walled for minimal thermophoresis. The agglomeration pipe was located between the turbocharger and the exhaust treatment devices. Sampling was made across the pipe and along the centre-line of the agglomeration pipe. The performance of the agglomeration pipe was compared with an equivalent insulated straight pipe. The non-volatile total particle number and size distribution were investigated. Particle number measurements were conducted according to the guidelines from the Particle Measurement Programme. The Engine was fuelled with commercially available low sulphur S10 diesel.
Journal Article

Analysis of the Turbocharger Compressor Surge Margin Using a Hurst-Exponent-based Criterion

2016-04-05
2016-01-1027
Turbocharger compressors are limited in their operating range at low mass flows by compressor surge, thus restricting internal combustion engine operation at low engine speeds and high mean effective pressures. Since the exact location of the surge line in the compressor map depends on the whole gas exchange system, a safety margin towards surge must be provided. Accurate early surge detection could reduce this margin. During surge, the compressor outlet pressure fluctuates periodically. The Hurst exponent of the compressor outlet pressure is applied in this paper as an indicator to evaluate how close to the surge limit the compressor operates. It is a measure of the time-series memory that approaches zero for anti-persistence of the time series. That is, a Hurst exponent close to zero means a high statistical preference that a high value is followed by a low value, as during surge.
Technical Paper

Analyzing the Limitations of the Rider and Electric Motorcycle at the Pikes Peak International Hill Climb Race

2019-04-02
2019-01-1125
This paper describes a post-race analysis of team KOMMIT EVT’s electric motorcycle data collected during the 2016 Pikes Peak International Hill Climb (PPIHC). The motorcycle consumed approximately 4 kWh of battery energy with an average and maximum speed of 107 km/h and 149 km/h, respectively. It was the second fastest electric motorcycle with a finishing time of 11:10.480. Data was logged of the motorcycle’s speed, acceleration, motor speed, power, currents, voltages, temperatures, throttle position, GPS position, rider’s heart rate and the ambient environment (air temperature, pressure and humidity). The data was used to understand the following factors that may have prevented a faster time: physical fitness of the rider, thermal limits of the motor and controller, available battery energy and the sprocket ratio between the motor and rear wheel.
Technical Paper

CFD-Driven Preliminary Investigation of Ethanol-Diesel Diffusive Combustion in Heavy-Duty Engines

2019-12-19
2019-01-2192
The introduction of renewable alcohols as fuels for heavy-duty engines may play a relevant role for the reduction of the carbon footprint of the transport sector. The direct injection of ethanol as main fuel and diesel as pilot fuel in the engine combustion chamber through two separate injectors may allow good combustion controllability over the entire engine operating range by targeting diffusive combustion. Closed-cycle combustion simulations have been carried out using AVL FIRE coupled to AVL TABKIN for the implementation of the Flamelet Generated Manifold (FGM) chemistry reduction technique in order to investigate the influence of the injection system geometry and the injection strategy of pure ethanol and diesel fuel on ignition characteristics and combustion at different operating conditions.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
Technical Paper

Correlation of Oil Originating Particle Emissions and Knock in a PFI HD SI Engine Fueled with Methanol

2023-08-28
2023-24-0036
A viable option to reduce global warming related to internal combustion engines is to use renewable fuels, for example methanol. However, the risk of knocking combustion limits the achievable efficiency of SI engines. Hence, most high load operation is run at sub-optimal conditions to suppress knock. Normally the fuel is a limiting factor, however when running on high octane fuels such as methanol, other factors also become important. For example, oil droplets entering the combustion chamber have the possibility to locally impact both temperature and chemical composition. This may create spots with reduced octane number, hence making the engine more prone to knock. Previous research has confirmed a connection between oil droplets in the combustion chamber and knock. Furthermore, previous research has confirmed a connection between oil droplets in the combustion chamber and exhaust particle emissions.
Technical Paper

Cycle-To-Cycle Effects and Knock Prediction using Spark Induced Disturbances on a PFI Methanol HD SI Engine

2022-08-30
2022-01-1067
Stoichiometric operation of a Port Fueled Injection (PFI) Spark-Ignited (SI) engine with a three-way catalytic converter offers excellent CO2 reduction when run on renewable fuel. The main drawbacks with stoichiometric operation are the increased knock propensity, high exhaust temperature and reduced efficiency. Knock is typically mitigated with a reactive knock controller, with retarded ignition timing whenever knock is detected and the timing then slowly advanced until knock is detected again. This will cause some cycles to operate with non-ideal ignition timing. The current work evaluates the possibility to predict knock using the measured and modelled temperatures at Inlet Valve Closing (IVC) and Top Dead Center (TDC). Feedback effects are studied beyond steady state operation by using induced ignition timing disturbances.
Technical Paper

Dynamic Exhaust Valve Flow 1-D Modelling During Blowdown Conditions

2019-01-15
2019-01-0058
To conduct system level studies on internal combustion engines reduced order models are required in order to keep the computational load below reasonable limits. By its nature a reduced order model is a simplification of reality and may introduce modeling errors. However what is of interest is the size of the error and if it is possible to reduce the error by some method. A popular system level study is gas exchange and in this paper the focus is on the exhaust valve. Generally the valve is modeled as an ideal nozzle where the flow losses are captured by reducing the flow area. As the valve moves slowly compared to the flow the process is assumed to be quasi-steady, i.e. interpolation between steady-flow measurements can be used to describe the dynamic process during valve opening. These measurements are generally done at low pressure drops, as the influence of pressure ratio is assumed to be negligible.
Journal Article

Effects of Boundary Layer and Local Volumetric Cells Refinements on Compressor Direct Noise Computation

2022-06-15
2022-01-0934
The use of turbochargers with downsized internal combustion engines improves road vehicles’ energy efficiency but introduces additional sound sources of strong acoustic annoyance on the turbocharger’s compressor side. In the present study, direct noise computations (DNC) are carried out on a passenger vehicle turbocharger compressor. The work focuses on assessing the influence of grid parameters on the acoustic predictions, to further advance the maturity of the acoustic modelling of such machines with complex three-dimensional features. The effect of the boundary layer mesh structure, and of the spatial resolution of the mesh, on the simulated acoustic signatures is investigated on detached eddy simulations (DES). Refinements in the core mesh are applied in areas of major acoustic production, to generate cells with sizes proportional to the local Taylor microscale values.
Technical Paper

Evaluation of Cylinder State Estimator using Fuel Evaporation Assessment in a PFI Methanol HD SI Engine

2022-08-30
2022-01-1065
Modern spark-ignited (SI) engines offer excellent emission reduction when operated with a stoichiometric mixture and a three-way catalytic converter. A challenge with stoichiometric compared to diluted operation is the knock propensity due to the high reactivity of the mixture. This limits the compression ratio, thus reducing engine efficiency and increasing exhaust temperature. The current work evaluated a model of conditions at inlet valve closing (IVC) and top dead center (TDC) for steady state operation. The IVC temperature model is achieved by a cycle-to-cycle resolved residual gas fraction estimator. Due to the potential charge cooling effect from methanol, a method was proposed to determine the fraction of fuel sourced from a wall film. Determining the level of charge cooling is important as it heavily impacts the IVC and TDC temperatures.
Technical Paper

Experimental Determination of the Heat Transfer Coefficient in Piston Cooling Galleries

2018-09-10
2018-01-1776
Piston cooling galleries are critical for the pistons’ capability to handle increasing power density while maintaining the same level of durability. However, piston cooling also accounts for a considerable amount of heat rejection and parasitic losses. Knowing the distribution of the heat transfer coefficient (HTC) inside the cooling gallery could enable new designs which ensure effective cooling of areas decisive for durability while minimizing parasitic losses and overall heat rejection. In this study, an inverse heat transfer method is presented to determine the spatial HTC distribution inside the cooling gallery based on surface temperature measurements with an infrared (IR) camera. The method utilizes a piston specially machined so it only has a thin sheet of material of a known thickness left between the cooling gallery and the piston bowl. The piston - initially at room temperature - is heated up with warm oil injected into the cooling gallery.
Journal Article

Heat Loss Analysis of a Steel Piston and a YSZ Coated Piston in a Heavy-Duty Diesel Engine Using Phosphor Thermometry Measurements

2017-03-28
2017-01-1046
Diesel engine manufacturers strive towards further efficiency improvements. Thus, reducing in-cylinder heat losses is becoming increasingly important. Understanding how location, thermal insulation, and engine operating conditions affect the heat transfer to the combustion chamber walls is fundamental for the future reduction of in-cylinder heat losses. This study investigates the effect of a 1mm-thick plasma-sprayed yttria-stabilized zirconia (YSZ) coating on a piston. Such a coated piston and a similar steel piston are compared to each other based on experimental data for the heat release, the heat transfer rate to the oil in the piston cooling gallery, the local instantaneous surface temperature, and the local instantaneous surface heat flux. The surface temperature was measured for different crank angle positions using phosphor thermometry.
Technical Paper

Heavy-Duty Engine Intake Manifold Pressure Virtual Sensor

2019-04-02
2019-01-1170
Increasing demands for more efficient engines and stricter legislations on exhaust emissions require more accurate control of the engine operating parameters. Engine control is based on sensors monitoring the condition of the engine. Numerous sensors, in a complex control context, increase the complexity, the fragility and the cost of the system. An alternative to physical sensors are virtual sensors, observers used to monitor parameters of the engine thus reducing both the fragility and the production cost but with a slight increase of the complexity. In the current paper a virtual intake manifold cylinder port pressure sensor is presented. The virtual sensor is based on a compressible flow model and on the pressure signal of the intake manifold pressure sensor. It uses the linearized pressure coefficient approach to keep vital performance behaviors while still conserving calibration effort and embedded system memory.
X