Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Autoignition and Combustion Characteristics in an HCCI Engine using a Blended Fuel of DME and City Gas

2023-09-29
2023-32-0017
In recent years, there has been a need to reduce CO2 emissions from internal combustion engines in order to achieve an energy-saving and low-carbon society. Against this backdrop, the authors have focused attention on Homogeneous Charge Compression Ignition (HCCI) combustion that achieves both high efficiency and clean emissions. With HCCI combustion, a premixed mixture of fuel and air is supplied to the cylinder and autoignited by piston compression to drive the engine. Autoignition makes it possible to operate the engine at a high compression ratio, enabling the HCCI combustion system to attain high efficiency. However, HCCI combustion also has some major unresolved issues. Two principal issues that can be cited are ignition timing control for igniting the mixture at the proper time and assurance of suitable combustion conditions following ignition to prevent incomplete combustion and knocking.
Technical Paper

Abnormal Combustion of Two Stroke Cycle Gasoline Snowmobile Engine at High Speed and Full Load

1979-02-01
790841
Abnormal combustion, which is a cause for engine failure, is explicated to be high speed knocking by multi-cycle analysis of the cylinder pressure data of snowmobile two stroke cycle engines operated at high speed and wide open throttle condition. A mini-computer was used for the analysis of the cylinder pressure data. Calculation of the entire cycle was conducted until an engine actually failed and the relationship between the engine failure and the conditions surrounding the knocking was made clear. Using the rate of pressure change as a quantitative evaluation method for high speed knocking, a combustion chamber shape with less knocking occurrence possibility was selected.
Technical Paper

Analysis on Sport All-Terrain Vehicle Jumping with Multibody Dynamic Simulations

2005-10-12
2005-32-0013
In case of all-terrain vehicles (ATVs), which have characteristics of both motorcycles and cars, the effect of the rider movement can not be ignored when analyzing ATVs' behavior. We have developed a simulation system of an ATV with rider operations, which are throttle control and rider movement, by using multibody dynamic simulation software. To quantify the rider operations and verify the validity of the simulation system, we have conducted experiments and simulations on a sport-ATV in two jumping patterns. In this paper the results of comparison between simulation and experiment are reviewed. Then, we report the analysis results of the effects of the rider operations and the ground profile to ATV jumping behavior with using the simulation system.
Technical Paper

Automated Inspection Utilizing Deep Learning for Polished Skin

2024-03-05
2024-01-1939
This technical paper reports the development of an automatic defect detector utilizing deep learning for “polished skins”. Materials with a “polished skin” are used in the fabrication of the external plates of commercial airplanes. The polished skin is obtained by polishing the surface of an aluminum clad material, and they are visually inspected, which places a significant burden on inspectors to find minute defects on relatively large pieces of material. Automated inspection of these skins is made more difficult because the material has a mirror finished surface. Defects are broadly classified into three categories: dents, bumps, and discolorations. Therefore, a defect detector must be able to detect these types of defects and measure the defects’ surface profile. This technical paper presents details related to the design and manufacture of an inexpensive automated defect detector that demonstrates a sufficiently high level of performance.
Technical Paper

Desorbing Test on Trace Contaminants for the Japanese Closed Ecology Experiment Facilities (CEEF)

1995-07-01
951582
In the closed environments, removal of trace contaminants generated from persons, animals, and plants is important function to keep the environment below the allowable level. We conducted the fundamental tests in order to confirm design of TCCA (Trace Contaminants Control Assembly) for Closed Ecology Experiment Facilities (CEEF), and obtained the following results; 1) The palladium-on-alumina catalyst is suitable for CO, CH4, C2H4 conversion at temperature lower than 400°C. 2) The alkali impregnated AC (activated charcoal) is effective for NO2, SO2 removal and prevents catalyst poisoning from SO2. 3) The active-desorbing conducted by hot air blow-throw an AC is effective for C2H5OH, CH2Cl2 desorbing. We discuss the fundamental test and design conditions for TCCA.
Technical Paper

Development and Progress of the Exhaust-System Device for 2-Stroke Engines

1999-09-28
1999-01-3332
Though most street-use motorcycles are now equipped with 4-stroke engines, off-road motorcycles, especially moto-cross racers, still mainly use 2-stroke engines because of their high power and light weight. 2-stroke engines for moto-cross racers require the engine characteristics of high power and excellent throttle response on a wide range of engine speeds. These characteristics immediately require an effective exhaust device to improve output performance at the middle-speed range while maintaining high power at the high-speed range. The latest 2-stroke engines maintain such performance by using an exhaust device, and also by the application of extensively improved basic elements such as the scavenging passage arrangement, exhaust timing and passage shape, etc. This paper briefly summarizes continuous efforts for the improvement of our exhaust-system device from its beginning until the present.
Technical Paper

Development of Alternative Fuel Content Estimation Method and Apparatus

2013-10-15
2013-32-9156
Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feed-back in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition.
Technical Paper

Development of Direct Injection Technology for Motorcycle Gasoline Engine

2023-10-24
2023-01-1850
The authors developed a gasoline engine that combined direct injection and port fuel injection in order to improve fuel economy for motorcycles. Compared to passenger car engines, motorcycle engines generally have smaller displacement and operate at higher engine speed, so the bore and stroke are generally smaller than those of passenger cars. Therefore, the direct injection spray characteristics optimized for small bore and stroke were selected to reduce fuel adhesion to various parts of the combustion chamber wall. In addition, this engine employed the high tumble intake port that can both strengthen turbulence intensity and suppress the decrease in volumetric efficiency to a lower level. Also, stratification of air-fuel mixture and split injection were employed for reducing catalyst warm-up time and soot. The results showed that excellent fuel economy was achieved without sacrificing engine output performance while meeting emissions regulations.
Technical Paper

Development of Intake Sound Control Technique for Sports-Type Motorcycles

2013-10-15
2013-32-9164
Engine sound is one of the most important factors when selecting a motorcycle from various models. Therefore, it is necessary to create an appealing sound in the rider's ears in addition to complying with noise regulations. In this paper, how we control intake sound is described through the study of a sports-type motorcycle with an inline 4 cylinder engine. To control intake sound, both intake pressure pulsations generated by the engine and acoustic transfer characteristics of the intake system are important. It is shown by unsteady-state one-dimensional computational fluid dynamics analysis that specifications of the exhaust system affect intake pressure pulsations across the valve overlap period. Therefore, to emphasize high order components of the engine revolutions in the intake sound, for example, modifying the layout of the exhaust muffler is effective.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
Technical Paper

Development of Supercharged Two-Stroke Engine with Intake and Exhaust Valve for Hybrid System

2023-10-24
2023-01-1823
The two-stroke engine has a small displacement and high output, and therefore saves space when the engine is installed in a vehicle. Thus, the application of two-stroke engines to HEVs is a very effective means of reducing vehicle weight and securing engine space. On the other hand, the unfired element increases in the exhaust gas with a two-stroke engine because the air-fuel mixture is blown through to the exhaust system during the scavenging process inside the cylinder. Moreover, combustion becomes unstable due to the large amount of residual burnt gas in the cylinder. To solve these problems, we propose a two-stroke engine that has intake and exhaust valves that injects fuel directly into the cylinder. We describe the engine shape and the method that can provide high scavenging efficiency and stable combustion in such a two-stroke engine.
Journal Article

Development of a Control Method to Reduce Acceleration Shock in Motorcycles

2010-09-28
2010-32-0106
The purpose of this paper is to propose a control method to reduce acceleration shock in motorcycles. Reducing the acceleration shock is very important in improving driveability of motorcycles. Motorcycles equipped with manual transmission have some backlashes in the transmission, with large backlash especially in dog clutch portions. We have figured out that one of the main causes of the acceleration shock is the collision of the dogs at high relative angular velocity during acceleration. Also, our data analysis has revealed that there is a correlation between a peak value of the longitudinal body acceleration and the relative angular velocity at the moment of the dog collision. A simulation was undertaken to verify this phenomenon, and its results have made it clear that we need to decrease the relative angular velocity at the moment of the dog collision so as to reduce the acceleration shock.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Development of a Lightweight One-Piece Aluminum Casting Swingarms

2023-10-24
2023-01-1808
Fuel-efficient motorcycles are essential for energy conservation and environmental load reduction. To achieve low fuel consumption, reducing the weight of the body parts of the motorcycle is important. This study focuses on reducing the weight of the swingarms, a relatively heavy body part. However, reducing the weight of swingarms is challenging owing to the low flexibility in their shape because swingarms are conventionally made of multiple pipes and casting parts welded together. Therefore, we utilized the integral casting technology and examined a new light weight shape. However, creating a new shape manually is difficult. Thus, we examined a new shape using the shape optimization technology, which has been recently used in additive manufacturing. The shapes fabricated using this technology are generally complex and difficult to manufacture by casting. Therefore, we adjusted optimization condition with casting.
Technical Paper

Development of a Magnesium Swing Arm for Motorcycles

2004-09-27
2004-32-0048
In order to improve the fuel efficiency and the operating performance of motorcycles, there is a need to reduce their weight. Magnesium, which is the lightest of the various metals currently being used and has a high specific strength, has the potential to satisfy that need. We conducted a study to clarify the weldability and strength characteristics of, and the most suitable surface treatment for, extruded magnesium alloys and rolled magnesium alloys. Based on the stress analysis by the finite element method, we designed a magnesium swing arm and produced the prototype swing arm by pressing hot rolled AZ31 magnesium alloy plates and welding them. The prototype is about 10% lighter and has higher torsional rigidity than a conventional aluminum swing arm.
Technical Paper

Development of a Riding Simulator for Motorcycles

2018-10-30
2018-32-0031
We developed the motorcycles based on RIDEOLOGY (Ride + Ideology) concept. In the past, the “Ride” was studied by a sensory evaluation with actual driving. However, the recent progress in numerical analysis, there have been developed driving simulators. It allows more quantitative measurement in a sensory evaluation. Therefore, we also developed a riding simulator specialized for motorcycles. In order to develop such riding simulator, there are some technical challenges for motorcycles. First, we need to reproduce roll motion height of motorcycles. Compared to four-wheeled vehicles, motorcycles have a higher center of rotation. Second, we need to reproduce vehicle motion control by rider’s changing body position. A rider controls vehicle’s lean by shifting his center of gravity. Therefore, it is necessary to construct a measurement system of rider’s body position. Third, we need to improve senses of speed and reality.
Technical Paper

Development of a Supercharged Engine for Motorcycle with a Centrifugal Supercharger

2015-11-17
2015-32-0729
1 In the development of motorcycle engines, a strong feeling of power, an element of being fun to ride has continued strong demand. However, demand to meet environmental performance, a conflicting element, has increased dramatically in recent years and a breakthrough technology that achieves both environmental performance and a feeling of power is in demand. Here, the newly developed engine has greatly enhanced feeling of power while clearing stringent environmental restrictions through use of a centrifugal type supercharger. However, there were several problems that had to be resolved with regards to application of a supercharger to a motorcycle engine. In applying a supercharger to a motorcycle, a major problem is the best way to keep the engine size from increasing in size. The engine, which is the heaviest parts on a motorcycle greatly affects motorcycle maneuverability so it must be compact and the mass concentrated.
Technical Paper

Effects of Engine Cooling System on Engine Performance: Balancing Engine Power and Fuel Consumption

2022-01-09
2022-32-0017
During high engine load, adequate engine cooling is necessary to prevent irregularly highly machine temperatures and spark knock that are issues affecting high power from being achieved. However, excessive cooling during low engine load or cooling locations that do not require cooling relatively exacerbates fuel consumption. Therefore, optimization of the engine cooling system is needed to achieve higher performance of motorcycle engines. First of all, in water-cooled engines, conventional water cooling system adjusts the cooling amount via flow channel switching with a thermostat, which is opened in high water temperature. However, with the bypass channel, water may bypass the radiator but still continues to circulate, thereby leading to loss arising from heat transfer from the cylinders.
Technical Paper

Effects of Port Injection Specifications on Air-Fuel Ratio and Emission Behavior under Transient Operation

2018-10-30
2018-32-0012
When an electronically controlled fuel injection device is located at downstream in intake port (hereinafter defined as downstream injection, on the other hand, upstream injection is defined as that fuel injection device is located at upstream in intake port), the possibilities of an improvement in the engine startability, increase in maximum power, and decrease in THC during warming have been reported in visualizations of the intake port. In addition, the amount of wall adhesion decreased with downstream injection in previous paper [1]. In this paper, we examine the influence on the amount of wall adhesion due to the difference in injection position on fuel transport in the intake port during transient operation and the obtained exhaust A/F and the amount of exhaust gas emitted during transient operation are evaluated.
X