Refine Your Search

Topic

Author

Search Results

Technical Paper

A 2-Dimensional Simulation Model for a Diesel Particulate Filter

1997-02-24
970471
The paper presents a 2-dimensional model for the calculation of the regeneration process in a wall flow diesel particulate filter. The model includes heat transfer by conduction and convection, a model for particle combustion based on diffusive burning of individual particles, and flow through the channels and across the filter walls. It was found that only the pressure drop across the walls need be considered for normal regeneration conditions. Comparisons between model predictions and experimental results for spatial dependent temperature time histories, and integrated degree of regeneration are used to validate the model. The validations were carried out for a series of severe regenerations, where there are large changes in flow and temperature throughout the process. Relative magnitudes of energy flows due to combustion, convection, and conduction are presented, as well as parametric studies of the effects of temperature, oxygen concentration and soot loading.
Technical Paper

A 50cc Two-Stroke DI Compression Ignition Engine Fuelled by DME

2008-06-23
2008-01-1535
The low auto-ignition temperature, rapid evaporation and high cetane number of dimethyl ether (DME) enables the use of low-pressure direct injection in compression ignition engines, thus potentially bringing the cost of the injection system down. This in turn holds the promise of bringing CI efficiency to even the smallest engines. A 50cc crankcase scavenged two-stroke CI engine was built based on moped parts. The major alterations were a new cylinder head and a 100 bar DI system using a GDI-type injector. Power is limited by carbon monoxide emission but smoke-free operation and NOx < 200ppm is achieved at all points of operation.
Technical Paper

A New Family of Nonlinear Observers for SI Engine Air/Fuel Ratio Control

1997-02-24
970615
In general most engine models for control applications have been constructed using regressions fitting and measured engine data. Such techniques have also been used to model the dynamic performance of engines. Unfortunately regression equation models are very complex and do not show directly the physical reality from which they emerge. This has for example made it impossible to write down explicitly the dymanic equations for, for example, the air exchange process in an SI engine in any form other than as the manifold pressure state equation. In recent a publication a Mean Value Engine Model (MVEM) has been constructed for an SI engine which is physically based and which has a simple physical form which can be immediately understood and manipulated.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A study on the effects of compression ratio, engine speed and equivalence ratio on HCCI combustion of DME

2007-07-23
2007-01-1860
An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly.
Technical Paper

Advanced Nonlinear Engine Idle Speed Control Systems

1994-03-01
940974
One of the most important operating modes for SI engines is in the idle speed region. This is because SI engines spend a large part of their time operating in this mode. Moreover, a large measure of operator satisfaction is dependent on an engine operating smoothly and reliably in and around idle. In particular the operator expects that the idle speed will remain constant in spite of the engine loads due to power steering pumps and air conditioning compressors. In the idle speed region an SI engine is thought to be quite nonlinear because the engine loading can be quite significant, thus forcing the engine to be driven through a reasonably large portion of its lower operating range. Many of the earlier studies of idle speed control systems have dealt with linearized models which in principle have limited validity for the problem at hand. In order to improve this situation, it is necessary to deal with the more general nonlinear control problem.
Technical Paper

Advanced Nonlinear Observer Control of SI Engines

1993-03-01
930768
In earlier work it has been shown that a nearly ideal solution to the problem of accurate estimation of the air mass flow to a central fuel injection (CFI) (or throttle body (TBI)) or EFI (or multi-point (MPI)) equipped engine is provided by using a closed loop nonlinear observer for the engine. With proper design this observer was shown to be both accurate and robust with respect to modelling end measurement errors. It is based on a Constant Gain Extended Kalman Filter (CGEKF). Since the publication of this work, another type of observer has emerged in the literature for which claims of great robustness have been made. This observer is based on new developments in the area of nonlinear control theory and is called a Sliding Mode Observer (SMO). In this paper these two types of observers are compared theoretically and experimentally on an engine mounted on a dynamometer. A very aggressive driving scenario is assumed for these tests.
Technical Paper

Applying Combustion Chamber Surface Temperature to Combustion Control of Motorcycle Engines

2016-11-08
2016-32-0087
Motorcycle usage continues to expand globally. Motorcycles use various fuels in different countries and regions, and it is required that they comply with emissions and fuel consumption regulations as specified in UN-GTR No.2 (WMTC). In general, a motorcycle engine has a large bore diameter and a high compression ratio due to demands of high performance. Poor fuel quality may cause damage to the engine, mainly by knocking. Knock control systems utilizing high-frequency vibration detection strategies like knock sensors, which are equipped on several sport-touring motorcycles, are not used widely for reasons of complex construction and high cost. This research aims to develop a new concept of combustion control for common motorcycle as an alternative.
Technical Paper

Avoiding Signal Aliasing in Event Based Engine Control

2000-03-06
2000-01-0268
Many modern control strategies for engine control are based on event based sampling. Operating the control strategy in the event domain makes it possible to obtain samples at specific crank shaft angles in the engine cycle, which is often desirable for certain control strategies. One of the biggest disadvantages involved with event based strategies is signal aliasing at low engine speeds or a high computational burden at higher engine speeds. This paper presents an easy solution to the aliasing problem above. If the data between the event based samples is stored using a time based strategy, it is shown here that a subsequent treatment of the sampled data as a time series together with a suitable low pass filter structure can avoid aliasing.
Technical Paper

Construction of Data-Setting Configuration Using Prescribed Template and Profile for Competition Motorcycles

2013-10-15
2013-32-9040
In racing world regardless of two-wheeled vehicle (motorcycle) or four-wheeled vehicle, vehicle setting is performed in accordance with various race conditions. From the age of carburetor till even now ECU is used, vehicle setting executes as well and plays an important role. Changeover to electronic control makes vehicle control more precise; meanwhile, vehicle control technique to become complicated is occurring every day. Therefore, whenever a new competition vehicle is developed, tool required for vehicle setting is also necessary to be updated according to vehicle control technique implemented. Setting-method till now is that, all information required for vehicle setting is packaged in tool, thereby tool and vehicle have always been a combination of 1-to-1. Consequently, in manufacturer's vehicle development, tool development / update becomes a burden and leads to increment of development costs.
Technical Paper

Cylinder Pressure Data Acquisition and Heat Release Analysis on a Personal Computer

1986-02-01
860029
The availability and low price of personal computers with suitable interface equipment has made it practical to use such a system for cylinder pressure data acquisition. With this objective, procedures have been developed to measure and record cylinder pressure on an individual crank angle basis and obtain an average cylinder pressure trace using an Apple II Plus personal computer. These procedures as well as methods for checking the quality of cylinder pressure data are described. A simplified heat release analysis technique for an approximate first look at the data quality is presented. Comparisons are made between the result of this analysis, the Krieger-Borman heat release analysis which uses complete chemical equilibrium. The comparison is made to show the suitability of the simplified analysis in judging the quality of the pressure data.
Journal Article

Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

2014-10-13
2014-01-2576
This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a reduced n-hexadecane mechanism with 79 species for diesel fuel surrogate was successfully derived from the detailed mechanism. Following that, the reduced n-hexadecane mechanism was validated under auto-ignition and PSR conditions using zero-dimensional (0-D) closed homogeneous batch reactor in CHEMKIN-PRO software. Agreement was achieved between the reduced and detailed mechanisms in ignition timing predictions and the reduced n-hexadecane mechanism was able to reproduce species concentration profiles with a maximum error of 40%. Accordingly, two-dimensional (2-D) Computational Fluid Dynamic (CFD) simulations were performed to study the spray combustion phenomena within a constant volume bomb.
Technical Paper

Development of DBW System for Motorcycles with Fast Response and Layout Flexibility

2012-10-23
2012-32-0051
The Drive By Wire (hereafter referred to as DBW) system is the electronically throttle control system. It controls a throttle valve in order to aim at a suitable throttle position according to an engine operating condition and a demand of driver or rider. This system is basically composed of a throttle body with driving motor, an Accelerator Position Sensor (hereafter referred to as APS), and an Electronic Control Unit (hereafter referred to as ECU). The DBW system is spreading to motorcycle field as replacement of existing mechanical intake control system. This is because there are some advantages as the following especially in the large displacement model: capability for installation of several functions, flexibility in adaptation to recent environmental regulations, and effect on reduction of system cost, etc. In general, the motorcycle has some unique features compared with the automobile. Among them, important features for the DBW system are following three points.
Technical Paper

Dimethyl Ether (DME) - Assessment of Viscosity Using the New Volatile Fuel Viscometer (VFVM)

2001-05-07
2001-01-2013
This paper describes the development and test of a viscometer capable of handling dimethyl Ether (DME) and other volatile fuels. DME has excellent combustion characteristics in diesel engines but the injection equipment can break down prematurely due to extensive wear when handling this fuel. It was established, in earlier work, that the wear in the pumps is substantial even if the lubricity of DME is raised to a believed acceptable level using anti-wear additives. An influence of the viscosity on the wear in the pumps was suspected. The problem, up to now, was that the viscosity of DME has only been estimated or calculated but never actually measured. In the present work a volatile fuel viscometer (VFVM) was developed. It is of the capillary type and it was designed to handle DME, neat or additised. The kinematic and dynamic viscosities of pure DME were measured at 0.185 cSt and 0.122 cP at 25 °C respectively.
Technical Paper

Direct Digital Control of the Diesel Fuel Injection Process

1992-02-01
920626
The pump-pipe-injector-injection system is the most commonly used type of injection equipment for Diesel engines. In order to be compatible with digital engine control, this system needs to be modified. The resulting fuel injection system should have the following characteristics: mechanical simplicity, direct control capability and low cost. Based on these requirements, the direct digital control of the pump-pipe-injector injection system has been investigated. A new solenoid control valve has been designed to simultaneously control the injection timing, fuel quantity and hydraulic performance. The conventional jerk-pump is very much simplified. A research type control unit based on a PC has been developed. The system has the possible configuration of electronic pump-pipe-valve-injector and electronic pump-valve-pipe-injector. The system was designed and analyzed on the basis of a comprehensive mechanical - magnetic - electrical - hydraulic computer simulation of the system.
Journal Article

Effects of Cavitation and Hydraulic Flip in 3-Hole GDI Injectors

2017-03-28
2017-01-0848
The performance of Gasoline Direct Injection (GDI) engines is governed by multiple physical processes such as the internal nozzle flow and the mixing of the liquid stream with the gaseous ambient environment. A detailed knowledge of these processes even for complex injectors is very important for improving the design and performance of combustion engines all the way to pollutant formation and emissions. However, many processes are still not completely understood, which is partly caused by their restricted experimental accessibility. Thus, high-fidelity simulations can be helpful to obtain further understanding of GDI injectors. In this work, advanced simulation and experimental methods are combined in order to study the spray characteristics of two different 3-hole GDI injectors.
Technical Paper

Engine Operation on Dimethyl Ether in a Naturally Aspirated, Dl Diesel Engine

1997-05-01
971665
A naturally aspirated, direct injection diesel engine was modified in order to be run on dimethyl ether (DME), with a conventional pump-line-nozzle system. The effects of various modifications to engine timing and the injection system as well as EGR were experimentally determined. Compared to the original diesel engine, the NOx emissions were reduced by over 70% through the use of suitable timing, lowered injector opening pressure and EGR. Particulate emissions were very low, and represent over a 90% reduction as compared to the original diesel version. The original pump-line-nozzle injection system was found to be not well suited to DME operation, CO and HC emissions were substantially higher due to secondary injections, caused by high pressure oscillations and residual pressure with the DME.
Technical Paper

Experimental Investigation of Cavitation in Gasoline Injectors

2010-05-05
2010-01-1500
Spray characteristics of injectors depend on, among other factors, not only the level of turbulence upstream of the nozzle plate, but also on whether cavitation arises. "Bulk" cavitation, by which we mean cavitation which arises far from walls and thus far from streamline curvature associated with salient points on a wall, has not been investigated thoroughly experimentally and moreover it is quite challenging to predict by means of computational fluid dynamics. Information about the effect of the injector geometry on the formation of bulk cavitation and quantitative measurements of the flow field that promotes this phenomenon in gasoline injectors does not exist and this forms the background to this work. Evolution of bulk cavitation was visualized in two gasoline multi-hole injectors by means of a fast camera.
Technical Paper

Experimental Study of Lignin Fuels for CI Engines

2024-06-12
2024-37-0022
This study explores the feasibility of using a sustainable lignin-based fuel, consisting of 44 % lignin, 50 % ethanol, and 6 % water, in conventional compression ignition (CI) marine engines. Through experimental evaluations on a modified small-bore CI engine, we identified the primary challenges associated with lignin-based fuel, including engine startup and shutdown issues due to solvent evaporation and lignin solidification inside the fuel system, and deposit formation on cylinder walls leading to piston ring seizure. To address these issues, we developed a fuel switching system transitioning from lignin-based fuel to cleaning fuel with 85 vol% of acetone, 10 vol% of water and 5 vol% of ignition improving additive, effectively preventing system clogs.
Technical Paper

Fuel Additive Effects on Particulate Emissions from a Diesel Engine

1997-02-24
970181
Studies were performed with three commonly used additive metals, cerium copper, and iron, with a conventional and a low sulfur fuel in order to investigate fuel additive effects on engine particulate emissions before a particulate filter. Measurements were made on a 4 cylinder direct injection diesel engine and included total particulate mass, soluble organic fraction for both fuels, and polynuclear aromatic hydrocarbon emissions for the low sulfur fuel. The cerium based additive reduced the emissions with both fuels, with the largest effect being on the non-SOF fraction. With the other additives and the high sulfur fuel, non-SOF emissions were increased, increasing total particulate emissions. Copper was found to reduce the polynuclear aromatic hydrocarbons, and cerium was found to have the least effect. The use of an SiC wall flow filter reduced particulate and polynuclear aromatic emissions by over 90%.
X