Refine Your Search

Topic

Author

Search Results

Technical Paper

A Characteristic Parameter to Estimate the Optimum Counterweight Mass of a 4-Cylinder In-Line Engine

2002-03-04
2002-01-0486
A dimensionless relationship that estimates the maximum bearing load of a 4-cylinder 4-stroke in-line engine has been found. This relationship may assist the design engineer in choosing a desired counterweight mass. It has been demonstrated that: 1) the average bearing load increases with engine speed and 2) the maximum bearing load initially decreases with engine speed, reaches a minimum, then increases quickly with engine speed. This minimum refers to a transition speed at which the contribution of the inertia force overcomes the contribution of the maximum pressure force to the maximum bearing load. The transition speed increases with an increase of counterweight mass and is a function of maximum cylinder pressure and the operating parameters of the engine.
Technical Paper

A Forward Collision Warning System Using Deep Reinforcement Learning

2020-04-14
2020-01-0138
Forward collision warning is one of the most challenging concerns in the safety of autonomous vehicles. A cooperation between many sensors such as LIDAR, Radar and camera helps to enhance the safety. Apart from the importance of having a reliable object detector, the safety system should have requisite capabilities to make reasonable decisions in the moment. In this work, we concentrate on detecting front vehicles of autonomous cars using a monocular camera, beyond only a detection method. In fact, we devise a solution based on a cooperation between a deep object detector and a reinforcement learning method to provide forward collision warning signals. The proposed method models the relation between acceleration, distance and collision point using the area of the bounding box related to the front vehicle. An agent of learning automata as a reinforcement learning method interacts with the environment to learn how to behave in eclectic hazardous situations.
Technical Paper

A Methodology for Measurement and Analysis of Head-To- B-Pillar Contact Pressure and Area Response

2001-03-05
2001-01-0718
Government accident statistics show that approximately 35% of all car accident victims suffer an injury to the head and face. Such injuries are common during frontal, side, and rollover accidents as the head may impact the steering wheel, side pillars, windshield, or roof. Further, non-threatening injuries (i.e abrasions) may be suffered due to contact with the deployed airbag, or, in the case of an out-of-position occupant, a deploying airbag. While the forces and accelerations measured internal to the head are known to correlate with serious head injury (i.e. concussion, skull fracture, diffuse axonal injury), it is currently not possible to record how the loads are distributed over the head and face with the current ATD. Ultimately, such data could eventually be used to provide improved resolution as to the probability of superficial, soft tissue damage since past cadaver studies show that the distribution of contact pressures are related to such injuries.
Technical Paper

A Parametric Computationally - Based Study of Windshield Heat Transfer Subject to Impinging Airflow

2004-03-08
2004-01-1382
Impinging jets are an established technique for obtaining high local heat transfer coefficients between a fluid and a surface. Factors such as jet attachment, surface angle, jet angle, separation distance between jet orifice and surface of impingement, and trajectory influence heat transfer dramatically. In the current study, the specific application of interest is air issuing from the defroster's nozzles of a vehicle and impinging on a glass windshield. The current work is aimed at studying the flow patterns off a vehicle windshield as a result of air issuing from various nozzle configurations. The effects of openings' geometry (circular vs rectangular), number of openings, angle that the windshield makes with the horizontal plane and angle of impinging jet, on windshield heat transfer is examined. An optimal configuration will be recommended for better heat transfer.
Technical Paper

An Analysis of Recent Accidents Involving Upper Extremity Fractures Associated with Airbag Deployment

2002-03-04
2002-01-0022
Prior experimental and field studies have demonstrated an increased risk of upper extremity fracture due the deployment of frontal airbags. The experimental studies provide valuable insight as to likely injury mechanisms; namely, increasing proximity increases the risk of forearm fracture. Still, field data is needed to validate these experimental findings. The available field data has largely been derived from direct case study analysis or a review of government accident statistics. In both cases, the datasets were comprised solely of pre-1995 era vehicles. Such data represents early generation airbag designs and there has been little additional study in this area. In addition, there has been an absence of fracture pattern analyses as a function of airbag deployment and non-deployment. Such an analysis would help elucidate the role of the deploying airbag on upper extremity fracture in the current fleet.
Technical Paper

Analysis of Rollover Injuries for 125 Occupants at a Single Trauma Center With Special Focus on Head and Neck Injury

2004-03-08
2004-01-0321
Analysis of the National Automotive Sampling System (NASS) data reveals that vehicle rollover accidents account for a relatively a small number of accidents, but the associated frequency of serious injury is high compared to frontal or side impact. These data demonstrate the apparently elevated probability of head and neck injury during rollover, with head injury occurring more frequently, injured 4.5 times more frequently than the neck when considering all injuries. Automotive industry researchers have performed numerous rollover tests with instrumented ATD's and have predicted an elevated probability of neck injury with little chance of head injury. This contradicts field data (NASS-CDS) which suggests a high frequency of head injury with little chance of neck injury. This difference may be explained in part, through the different volumes of data presented in the literature.
Technical Paper

Analysis of a Frontal Impact of a Formula SAE Vehicle

2006-12-05
2006-01-3627
The objective of this study was to determine risk of injury to the driver during a frontal impact in a Formula SAE vehicle. Formula SAE is a collegiate student design competition where every year universities worldwide build and compete with open-wheel formula-style race cars. Formula SAE 2006 rules stipulate the use of an impact attenuator to absorb energy in the event of a frontal impact. These rules mandated an average deceleration not to exceed 20-g from a speed of 7.0 m/s (23 ft/s), but do not specify a specific time or pulse shape of the deceleration. The pulse shapes tested in this study included an early high-g, constant-g, and late high-g pulse. The tests were performed using the deceleration sled at the Kettering University Crash Safety Center. Using industry standard practices, this study examined the driver's risk of injury with regard to neck and femur loads, head and chest accelerations, as well as kinematic analysis using high speed video.
Technical Paper

Application of a Knee Injury Criteria for the Hybrid III Dummy to Address a Variety of Car Crash and Restraint Scenarios

1999-03-01
1999-01-0710
Numerous studies have documented that lower extremity injury is second only to the head and face in automotive accidents. Such injuries are common because the lower extremity is typically the first point of contact between the occupant and the car interior. Of all lower extremity injuries, the knee is the most common site of trauma. This typically results from high speed contact with the instrument panel which can produce fracture and subfracture (contusions, lacerations, abrasions) level injuries. Current Federal safety guidelines use a bone fracture criterion which is based solely on a peak load. The criterion states that loads exceeding 10 kN will likely result in gross bone fracture. However, cadaver experiments have shown that increased contact area (via padding) over the knee can significantly increase the amount of load that can be tolerated before fracture or subfracture injury.
Technical Paper

Cervical Range of Motion Data in Children

2006-04-03
2006-01-1140
The “Range-of Motion of the Cervical Spine of Children” study is a collaboration between Kettering University and McLaren Regional Medical Center in Flint, Michigan to quantify and establish benchmarks of “normal” range of motion (ROM) in children. The results will be analyzed to determine mean and standard deviation of degrees of rotation and used to improve the occupant protection in motor vehicles, sports equipment and benefits of physical therapy. The data will be invaluable in the development of computational models to analyze processes involving children in motion.
Technical Paper

Characteristics of Trailer Rear Impact Guard - Interdependence of Guard Strength, Energy Absorption, Occupant Acceleration Forces and Passenger Compartment Intrusion

2008-04-14
2008-01-0155
FMVSS 223 and 224 set standards for “Rear Impact Protection” for trailers and semi-trailers with a gross weight rating greater than 10000 pounds. A limited amount of experimental data is available for evaluating the different performance attributes of rear impact guards. The crash tests are usually limited to fixed parameters such as impact speed, guard height, strength and energy absorption, etc. There also seems to be some misunderstanding of the interdependence of guard strength and energy absorption, and their combined effect on the guard's ability to limit underride while keeping occupant acceleration forces in a safe range. In this paper, we validated the Finite Element (FE) model of an existing rear impact guard against actual FMVSS 223 tests. We also modified a previously evaluated FE model of a 1990 Ford Taurus by updating its hood geometry and material properties.
Technical Paper

Child Restraint Systems: Top Tether Effectiveness in Side Impact Collisions

2013-04-08
2013-01-0601
Use of the top tether attachment in three commonly available anchor points provides added restraint of child restraint systems (CRS). Three tether attachment positions were used; floor, behind the head rest (parcel deck) and at the ceiling. The three anchor points are comparable in efficacy while no tether allows increased travel of the anthropomorphic test device (ATD) head. Two series of six tests were conducted at a max speed of 20 mph and peak deceleration of 16 G's using a deceleration sled test apparatus. The first series of tests was conducted at a 90 degree impact angle. On average there is 9% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal. The second series of tests was conducted at a 73 degree impact angle, there is 15% less head travel when using the tether attachment compared to not using the tether attachment, all other conditions begin equal.
Technical Paper

Considerations for Rollover Simulation

2004-03-08
2004-01-0328
Rollover crashes are responsible for a significant proportion of traffic fatalities each year, while they represent a relatively small proportion of all motor vehicle collisions. The purpose of this study was to focus on rollover events from an occupant's perspective to understand what type of industry test method, ATD, computer based model, and injury assessment measures are required to provide occupant protection during rollovers. Specific injuries most commonly experienced in rollovers along with the associated injury sources were obtained by review of 1998-2000 NASS-CDS records. These data suggest that models capable of predicting the likelihood of brain injuries, specifically subarachnoid and subdural hemorrhage, are desirable. Ideally, the model should also be capable of predicting the likelihood of rib fractures, lung contusions and shoulder (clavicular and scapular) fractures, and facet, pedicle, and vertebral body fractures in the cervical spine.
Technical Paper

Effect of Aftermarket Modifications on ADAS Functionality – 2022 Chevrolet Silverado Light Vehicle

2024-04-09
2024-01-1961
Advanced Driver Assistance Systems (ADAS) are becoming common on passenger cars and pickup trucks. Accordingly, the manufacturers and installers of aftermarket equipment for these vehicles have an interest in confirming the functionality of ADAS when their equipment is put in place. However, there is very little publicly available information on the effect of aftermarket components on original equipment ADAS. To address this deficiency, a research program was undertaken in which a 2022 Chevrolet Silverado 1500 light truck was tested in four different hardware configurations, including stock as well as three modified conditions. Aftermarket modifications to the vehicle consisted of increased tire diameters, a level kit, and two different lift kits. A series of physical tests were carried out to evaluate the ADAS performance of the vehicle with modifications.
Technical Paper

Estimation of Frontal Crush Stiffness Coefficients for Car-to-Heavy Truck Underride Collisions

2007-04-16
2007-01-0731
The first objective of this paper was to evaluate a public domain finite element (FE) model of a 1990 Ford Taurus from the perspective of crush energy absorption. The validity of the FE model was examined by first comparing simulation results to several published full-frontal crash tests. Secondly, the suitability of the model for underride simulation was evaluated against two series of full-scale crash tests into vertically offset rigid barriers. Next, the evaluated FE model was used to pursue the main objective of this work, namely to develop an approach for estimating underride crush energy. The linear-spring methodology was adopted whereby the underride crush stiffness was determined by relating the residual upper radiator support deformation to crush energy. An underride crush stiffness estimation method was proposed based on modifying the full-frontal stiffness coefficients.
Technical Paper

Experimentation for Design Improvements for Coil Spring in the Independent Suspension

2020-04-14
2020-01-0503
The objective of this project is to analyze potential design changes that can improve the performance of helical spring in an independent suspension. The performance of the helical spring was based upon the result measure of maximum value of stress acting on it and the amount displacement caused when the spring undergoes loading. The design changes in the spring were limited to coil cross section, spring diameter (constant & variable), pitch and length of the spring. The project was divided into Stage I & Stage II. For Stage I, using all the possible combinations of these design parameters, linear stress analysis was performed on different spring designs and their Stress and displacement results were evaluated. Based on the results, the spring designs were classified as over designed or under designed springs.
Technical Paper

External Knee Geometry Surface Variation as a Function of Subject Anthropometry and Flexion Angle for Human and Surrogate Subjects

2007-04-16
2007-01-1162
The current study was designed to compare the surface anatomy of the knee for different human subject anthropometries using a 3-D, non-contact digitizer which converted the anatomy into point clouds. The subjects were studied at flexion angles of 60, 90, and 120 degrees. Multiple subjects fitting narrow anthropometrical specifications were studied: 5th percentile female, 50th percentile male, and 95th percentile male. These data were then compared to a corresponding anthropometrical crash dummy knee which served as an unambiguous control. Intersubject human comparisons showed surface geometry variations which were an order of magnitude smaller than comparisons between the human and dummy knee. Large errors between the human and dummy were associated with the muscle bulk proximal and distal to the popliteal region and the rounder shape of the human knee.
Technical Paper

Flash Temperature in Clutches

2005-10-24
2005-01-3890
Sliding contact between friction surfaces occurs in numerous torque transfer elements: torque converter clutches, shifting clutches, launch or starting clutches, limited slip differential clutches, and in the meshing of gear teeth under load. The total temperature in a friction interface is the sum of the equilibrium temperature with no sliding and a transient temperature rise, the flash temperature, caused by the work done while sliding. In a wet shifting clutch the equilibrium temperature is typically the bulk oil temperature and the flash temperature is the temperature rise during clutch engagement. The flash temperature is an important factor in the performance and durability of a clutch since it affects such things as the reactivity of the sliding surfaces and lubricant constituents (e.g., oxidation) and thermal stress in the components. Knowing how high the flash temperature becomes is valuable for the formulation of ATF, gear oil, engine oil and other lubricants.
Technical Paper

High Speed Measurement of Contact Pressure and Area during Knee-to-Instrument Panel Impact Events Suffered from Frontal Crashes

2001-03-05
2001-01-0174
Numerous human cadaver impact studies have shown that acute injury to the knee, femoral shaft, and hip may be significantly reduced by increasing the contact area over the anterior surface of the knee. Such impact events are common in frontal crashes when the knee strikes the instrument panel (IP). The cadaveric studies show that the injury threshold of the knee-thigh-hip complex increases as the contact area over the knee is likewise increased. Unfortunately, no prior methodology exists to record the spatial and temporal contact pressure distributions in dummy (or cadaver) experiments. Previous efforts have been limited to the use of pressure sensitive film, which only yields a cumulative record of contact. These studies assumed that the cumulative pressure sensitive film image correlated with the peak load, although this has never been validated.
Technical Paper

Implantation Design Guidelines for Instrumenting the Cadaveric Lower Extremity to Transduce Femur Loads and Tibial Forces and Moments

2003-03-03
2003-01-0162
Numerous studies have documented the implantation of a 6-axis load cell in series with the tibial shaft and a limited number of studies have instrumented the femur for uniaxial load transduction. We are unaware of a single study seeking to instrument both anatomical segments. In addition, while the instrumentation processes have been described in textural and graphical detail, the dimensions and material choices for preparation jigs, potting cups, etc. are typically not given. In the current study, we have reviewed the available literature and have developed a modified preparation and implantation methodology. We also include complete designs appropriate for a reproduction of our process or modification of the methodology by the reader. The robustness of our technique was verified in a companion study in which whole, unembalmed cadavers were subjected to a HYGE frontal sled test without compromise of the instrumentation.
Technical Paper

Injury Sources for Second Row Occupants in Frontal Crashes Considering Age and Restraint Condition Influence

2015-04-14
2015-01-1451
The current study examined field data in order to document injury rates, injured body regions, and injury sources for persons seated in the second row of passenger vehicles. It was also intended to identify whether these varied with respect to age and restraint use in vehicles manufactured in recent years. Data from the 2007-2012 National Automotive Sampling System (NASS/CDS) was used to describe occupants seated in the second row of vehicles in frontal crashes. Injury plots, comparison of means and logistic regression analysis were used to seek factors associated with increased risk of injury. Restraint use reduced the risk of AIS ≥ 2 injury from approximately 1.8% to 5.8% overall. Seventy nine percent of the occupants in the weighted data set used either a lap and shoulder belt or child restraint system. The most frequently indicated injury source for persons with a MAIS ≥ 2 was “seat, back support”, across restraint conditions and for all but the youngest occupants.
X