Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

A Comparison of the Effect of Combustion Chamber Surface Area and In-Cylinder Turbulence on the Evolution of Gas Temperature Distribution from IVC to SOC: A Numerical and Fundamental Study

2006-04-03
2006-01-0869
It has previously been shown experimentally and computationally that the process of Homogeneous Charge Compression Ignition (HCCI) is very dependent on the pre-combustion gas temperature field. This study looks in detail at how temperature fields can evolve by comparing results of two combustion chamber designs, a piston with a square bowl and a disk shaped piston, and relates these temperature fields to measured HCCI combustion durations. The contributions of combustion chamber surface area and turbulence levels to the gas temperature evolution are considered over the crank angle range from intake valve closure to top-dead-center. This is a CFD study, whose results were transformed into traditional analysis methods of convective heat transfer (q=h*A*ΔT) and boundary layers.
Technical Paper

A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion

2002-10-21
2002-01-2870
This paper shows how a computer can systematically remove non-essential chemical reactions from a large chemical kinetic mechanism. The computer removes the reactions based upon a single solution using a detailed mechanism. The resulting reduced chemical mechanism produces similar numerical predictions significantly faster than predictions that use the detailed mechanism. Specifically, a reduced chemical kinetics mechanism for iso-octane has been derived from a detailed mechanism by eliminating unimportant reaction steps and species. The reduced mechanism has been developed for the specific purpose of fast and accurate prediction of ignition timing in an HCCI engine. The reduced mechanism contains 199 species and 383 reactions, while the detailed mechanism contains 859 species and 3606 reactions. Both mechanisms have been used in numerical simulation of HCCI combustion.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

A Detailed Chemical Kinetic Analysis of Low Temperature Non-Sooting Diesel Combustion

2005-04-11
2005-01-0923
We have developed a model of the diesel fuel injection process for application to analysis of low temperature non-sooting combustion. The model uses a simplified mixing correlation and detailed chemical kinetics to analyze a parcel of fuel as it moves along the fuel jet, from injection to evaporation and ignition. The model predicts chemical composition and soot precursors, and is applied at conditions that result in low temperature non-sooting combustion. Production of soot precursors is the first step toward production of soot, and modeling precursor production is expected to give insight into the overall evolution of soot inside the engine. The results of the analysis show that the model has been successful in describing many of the observed characteristics of low temperature combustion.
Journal Article

A Framework for Quantifying Measurement Uncertainties and Uncertainty Propagation in HCCI/LTGC Engine Experiments

2017-03-28
2017-01-0736
In this paper, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of the mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion

2001-03-05
2001-01-1027
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers.
Technical Paper

Acceleration of Detailed Chemical Kinetics Using Multi-zone Modeling for CFD in Internal Combustion Engine Simulations

2012-04-16
2012-01-0135
Detailed chemical kinetics, although preferred due to increased accuracy, can significantly slow down CFD combustion simulations. Chemistry solutions are typically the most computationally costly step in engine simulations. The calculation time can be significantly accelerated using a multi-zone combustion model. The multi-zone model is integrated into the CONVERGE CFD code. At each time-step, the CFD cells are grouped into zones based on the cell temperature and equivalence ratio. The chemistry solver is invoked only on each zone. The zonal temperature and mass fractions are remapped onto the CFD cells, such that the temperature and composition non-uniformities are preserved. Two remapping techniques published in the literature are compared for their relative performance. The accuracy and speed-up of the multi-zone model is improved by using variable bin sizes at different temperature and equivalence ratios.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System - NOX Adsorber Management

2004-03-08
2004-01-0585
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

An Investigation of the Effect of Fuel-Air Mixedness on the Emissions from an HCCI Engine

2002-05-06
2002-01-1758
This research work has focused on measuring the effect of fuel/air mixing on performance and emissions for a homogeneous charge compression ignition engine running on propane. A laser instrument with a high-velocity extractive probe was used to obtain time-resolved measurements of the fuel concentration both at the intake manifold and from the cylinder for different levels of fuel-air mixing. Cylinder pressure and emissions measurements have been performed at these mixing levels. From the cylinder pressure measurements, the IMEP and peak cylinder pressure were found. The fuel-air mixing level was changed by adding the fuel into the intake system at different distances from the intake valve (40 cm and 120 cm away). It was found that at the intake manifold, the fuel and air were better mixed for the 120 cm fuel addition location than for the 40 cm location.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

2005-05-11
2005-01-2134
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
Technical Paper

Assessing the National Off-Cycle Benefits of 2-Layer HVAC Technology Using Dynamometer Testing and a National Simulation Framework

2023-04-11
2023-01-0942
Some CO2-reducing technologies have real-world benefits not captured by regulatory testing methods. This paper documents a two-layer heating, ventilation, and air-conditioning (HVAC) system that facilitates faster engine warmup through strategic increased air recirculation. The performance of this technology was assessed on a 2020 Hyundai Sonata. Empirical performance of the technology was obtained through dynamometer tests at Argonne National Laboratory. Performance of the vehicle across multiple cycles and cell ambient temperatures with the two-layer technology active and inactive indicated fuel consumption reduction in nearly all cases. A thermally sensitive powertrain model, the National Renewable Energy Laboratory’s FASTSim Hot, was calibrated and validated against vehicle testing data. The developed model included the engine, cabin, and HVAC system controls.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
Journal Article

Combined Fluid Loop Thermal Management for Electric Drive Vehicle Range Improvement

2015-04-14
2015-01-1709
Electric drive vehicles (EDVs) have complex thermal management requirements not present in conventional vehicles. In addition to cabin conditioning, the energy storage system (ESS) and power electronics and electric motor (PEEM) subsystems also require thermal management. Many current-generation EDVs utilize separate cooling systems, adding both weight and volume, and lack abundant waste heat from an engine for cabin heating. Some use battery energy to heat the cabin via electrical resistance heating, which can result in vehicle range reductions of 50% under cold ambient conditions. These thermal challenges present an opportunity for integrated vehicle thermal management technologies that reduce weight and volume and increase cabin heating efficiency. Bench testing was conducted to evaluate a combined fluid loop technology that unifies the cabin air-conditioning and heating, ESS thermal management, and PEEM cooling into a single liquid coolant-based system.
Technical Paper

Current Research in HCCI Combustion at UC Berkeley and LLNL

2001-08-20
2001-01-2511
This paper describes the Homogeneous charge compression ignition (HCCI) research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. HCCI is an old combustion technology that may now be developed with expectations of high efficiency, low NOx, and low particulate matter emissions; in short, an alternative to diesel engines. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability.
X