Refine Your Search

Topic

Author

Search Results

Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

A Machine Learning Approach to Information Extraction from Cylinder Pressure Sensors

2012-04-16
2012-01-0440
As the number of actuators and sensors increases in modern combustion engines, the task of optimizing engine performance becomes increasingly complex. Efficient information processing techniques are therefore important, both for off-line calibration of engine maps, and on-line adjustments based on sensor data. In-cylinder pressure sensors are slowly spreading from laboratory use to production engines, thus making data with high temporal resolution of the combustion process available. The standard way of using the cylinder pressure data for control and diagnostics is to focus on a few important physical features extracted from the pressure trace, such as the combustion phasing CA50, the indicated mean effective pressure IMEP, and the ignition delay. These features give important information on the combustion process, but much information is lost as the information from the high-resolution pressure trace is condensed into a few key parameters.
Journal Article

A Model-Based Injection-Timing Strategy for Combustion-Timing Control

2015-04-14
2015-01-0870
The combustion timing in internal combustion engines affects the fuel consumption, in-cylinder peak pressure, engine noise and emission levels. The combination of an in-cylinder pressure sensor together with a direct injection fuel system lends itself well for cycle-to-cycle control of the combustion timing. This paper presents a method of controlling the combustion timing by the use of a cycle-to-cycle injection-timing algorithm. At each cycle the currently estimated heat-release rate is used to predict the in-cylinder pressure change due to a combustion-timing shift. The prediction is then used to obtain a cycle-to-cycle model that relates combustion timing to gross indicated mean effective pressure, max pressure and max pressure derivative. Then the injection timing that controls the combustion timing is decided by solving an optimization problem involving the model obtained.
Technical Paper

A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-10-16
2006-01-3329
A previously presented robust and fast diagnostic NOx model was modified into a predictive model. This was done by using simple yet physically-based models for fuel injection, ignition delay, premixed heat release rate and diffusion combustion heat release rate. The model can be used both for traditional high temperature combustion and for high-EGR low temperature combustion. It was possible to maintain a high accuracy and calculation speed of the NOx model itself. The root mean square of the relative model error is 16 % and the calculation speed is around one second on a PC. Combustion characteristics such as ignition delay, CA50 and the general shape of the heat release rate are well predicted by the combustion model. The model is aimed at real time NOx calculation and optimization in a vehicle on the road.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Journal Article

Analysis of Errors in Heat Release Calculations Due to Distortion of the In-Cylinder Volume Trace from Mechanical Deformation in Optical Diesel Engines

2012-09-10
2012-01-1604
Optical engines of Bowditch design may suffer from distortion of the in-cylinder volume trace due to mechanical deformation from inertial, pressure and thermal forces. Errors in heat release calculation associated with such deformation were investigated in detail. The deformations were quantified by measuring the squish height during operation using high speed video. Deformations of all-metal engines were also estimated for comparison. The volume change caused by deformations did not change the calculated load significantly but caused errors in the heat release calculations both for optical and all metal engines. The errors at a given operating condition are smaller for all-metal engines but the importance is not necessarily smaller, since these engines normally are operated at higher loads. The errors can be eliminated by a corrected in-cylinder volume equation and a subtraction of heat release from a motored case.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Technical Paper

Comparison of Kinetic Mechanisms for Numerical Simulation of Methanol Combustion in DICI Heavy-Duty Engine

2019-04-02
2019-01-0208
The combustion process in a homogeneous charge compression ignition (HCCI) engine is mainly governed by ignition wave propagation. The in-cylinder pressure, heat release rate, and the emission characteristics are thus largely driven by the chemical kinetics of the fuel. As a result, CFD simulation of such combustion process is very sensitive to the employed reaction mechanism, which model the real chemical kinetics of the fuel. In order to perform engine simulation with a range of operating conditions and cylinder-piston geometry for the design and optimization purpose, it is essential to have a chemical kinetic mechanism that is both accurate and computational inexpensive. In this paper, we report on the evaluation of several chemical kinetic mechanisms for methanol combustion, including large mechanisms and skeletal/reduced mechanisms.
Technical Paper

Comparison of Laser-Extinction and Natural Luminosity Measurements for Soot Probing in Diesel Optical Engines

2016-10-17
2016-01-2159
Soot emissions from diesel internal combustion engines are strictly regulated nowadays. Laser extinction measurement (LEM) and natural luminosity (NL) of sooty flames are commonly applied to study soot. LEM measures soot along the laser beam path and it can probe soot regardless of temperature. NL integrates the whole field of view and relies on soot temperature. In this work, a comparison of simultaneously recorded LEM and NL data has been performed in a heavy-duty optical engine. A 685 nm laser beam is used for LEM. The laser was modulated at 63 kHz, which facilitated subtraction of the background NL signal from the raw LEM data. By Beer-Lambert’s law, KL factor can be calculated and used as a metric to describe soot measurements. A compensation of transmitted laser intensity fluctuation and soot deposits on optical windows has been performed in this work.
Journal Article

Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions

2013-04-08
2013-01-0902
Gasoline partially premixed combustion (PPC) has the potential of high efficiency and simultaneous low soot and NOx emissions. Running the engine in PPC mode with high octane number fuels has the advantage of a longer premix period of fuel and air which reduces soot emissions. The problem is the ignitability at low load and idle operating conditions. In a previous study it was shown that it is possible to use NVO to improve combustion stability and combustion efficiency at operating conditions where available boosted air is assumed to be limited. NVO has the disadvantage of low net indicated efficiency due to heat losses from recompressions of the hot residual gases. An alternative to NVO is the rebreathing valve strategy where the exhaust valves are reopened during the intake stroke. The net indicated efficiency is expected to be higher with the rebreathing strategy but the question is if similar improvements in combustion stability can be achieved with rebreathing as with NVO.
Journal Article

Diesel Spray Ignition Detection and Spatial/Temporal Correction

2012-04-16
2012-01-1239
Methods for detection of the spatial position and timing of diesel ignition with improved accuracy are demonstrated in an optically accessible constant-volume chamber at engine-like pressure and temperature conditions. High-speed pressure measurement using multiple transducers, followed by triangulation correction for the speed of the pressure wave, permits identification of the autoignition spatial location and timing. Simultaneously, high-speed Schlieren and broadband chemiluminescence imaging provides validation of the pressure-based triangulation technique. The combined optical imaging and corrected pressure measurement techniques offer improved understanding of diesel ignition phenomenon. Schlieren imaging shows the onset of low-temperature (first-stage) heat release prior to high-temperature (second-stage) ignition. High-temperature ignition is marked by more rapid pressure rise and broadband chemiluminescence.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
Technical Paper

Effect of Piston Geometry on Stratification Formation in the Transition from HCCI to PPC

2018-09-10
2018-01-1800
Partially premixed combustion (PPC) is an advanced combustion strategy that has been proposed to provide higher efficiency and lower emissions than conventional compression ignition, as well as greater controllability than homogeneous charge compression ignition (HCCI). Stratification of the fuel-air mixture is the key to achieving these benefits. The injection strategy, injector-piston geometry design and fuel properties are factors commonly manipulated to adjust the stratification level. In the authors’ previous research, the effects of injection strategy and fuel properties on the stratification formation process were investigated. The results revealed that, for a direct-injection compression ignition engine, by sweeping the injection timing from −180° aTDC (after top dead center) to −20° aTDC, the sweep could be divided into three different regimes: an HCCI regime, a Transition regime and a PPC regime, based on the changing of mixture stratification conditions.
Technical Paper

Effect of Pre-Chamber Volume and Nozzle Diameter on Pre-Chamber Ignition in Heavy Duty Natural Gas Engines

2015-04-14
2015-01-0867
It has previously been shown by the authors that the pre-chamber ignition technique operating with fuel-rich pre-chamber combustion strategy is a very effective means of extending the lean limit of combustion with excess air in heavy duty natural gas engines in order to improve indicated efficiency and reduce emissions. This article presents a study of the influence of pre-chamber volume and nozzle diameter on the resultant ignition characteristics. The two parameters varied are the ratio of pre-chamber volume to engine's clearance volume and the ratio of total area of connecting nozzle to the pre-chamber volume. Each parameter is varied in 3 steps hence forming a 3 by 3 test matrix. The experiments are performed on a single cylinder 2L engine fitted with a custom made pre-chamber capable of spark ignition, fuel injection and pressure measurement.
Technical Paper

Effect of Start of Injection on the Combustion Characteristics in a Heavy-Duty DICI Engine Running on Methanol

2017-03-28
2017-01-0560
Methanol as an alternative fuel in internal combustion engines has an advantage in decreasing emissions of greenhouse gases and soot. Hence, developing of a high performance internal combustion engine operating with methanol has attracted the attention in industry and academic research community. This paper presents a numerical study of methanol combustion at different start-of-injection (SOI) in a direct injection compression ignition (DICI) engine supported by experimental studies. The aim is to investigate the combustion behavior of methanol with single and double injection at close to top-dead-center (TDC) conditions. The experimental engine is a modified version of a heavy duty D13 Scania engine. URANS simulations are performed for various injection timings with delayed SOI towards TDC, aiming at analyzing the characteristics of partially premixed combustion (PPC).
X