Refine Your Search

Topic

Author

Search Results

Technical Paper

A Development of Booming Index of Diesel SUV by using Artificial Neural Network

2012-06-13
2012-01-1542
In today's competitive scenario, understanding mental modal map of individual customer perception plays a major role to create the brand image of vehicle. Among them “comfortable sound” is one of the important criteria for customer satisfaction, especially in case of diesel vehicle, where in-cab sound quality plays a crucial factor. Often customer perception concerning comfort in automotive industry relies on subjective comfort evaluation method. Converting the customer perception into objective measurements and to correlate them is often tough task for NVH engineers. It is because of human sensation behavior differs from persons to person, mental map, geographical location and domain knowledge. In addition acoustic & comfort relevant aspects are often subjectively evaluated based on jury trials conducted on the prototype vehicle and class competitive benchmark vehicles to get the feel & confidence of product for different gateways.
Technical Paper

A Holistic Approach to Develop a Modern High-Power Density Diesel Engine to Meet Best-in-Class NVH Levels

2020-04-14
2020-01-0406
The ever-increasing customer expectations put a lot of pressure on car manufacturers to constantly reduce the noise, vibration, and harshness (NVH) levels. This paper presents the holistic approach used to achieve best-in-class NVH levels in a modern high-power density 1.5 lit 4-cylinder diesel engine. In order to define the NVH targets for the engine, global benchmark engines were analysed with similar cubic capacity, power density, number of cylinders and charging system. Moreover, a benchmark diesel engine (considered as best-in-class in NVH) was measured in a semi-anechoic chamber to define the engine-level NVH targets of the new engine. The architecture selection and design of all the critical components were done giving due consideration to NVH behaviour while keeping a check on the weight and cost.
Technical Paper

A Methodology for the Design Optimization of Fuel Control Unit Bracket and Fuel Pump Housing Integration and Achieving the System Targets

2022-03-29
2022-01-0636
The increasing demand for higher specific power and the need for weight reduction and decrease of emissions have become the driving factors of product development in the automotive market today. Substitution of high-density materials and more precise adjustment of material parameters help in significant weight decrease, but it is accompanied by undesirable cost increase and manufacturing complexity. One of the approaches to optimize the design is through the process of integration which involves integrating the functional elements of two or more components into one and achieving a reduction in weight and cost without impacting required performance. This paper explains a similar approach followed as a part of the Design and Development of 1.5 L, 3 Cylinder CRDI Diesel Engine for a new vehicle platform, developed for automotive passenger car application.
Technical Paper

A Methodology to Validate the V-band Clamp Used in High-Temperature Sealing Joint of a Light-Duty Diesel Engine

2022-03-29
2022-01-0637
The stringent emission regulations demand highly complex after-treatment systems. The packaging and functional requirements of the after-treatment system demand very close coupling of the diesel oxidation catalyst (DOC) with the turbocharger outlet. The sealing effectiveness between the turbocharger and DOC is ensured by the V-band grooved clamp along with the suitable gasket. This V-band grooved clamp is widely used in diesel engines due to its ease of assembly and low cost. Since the V-band grooved clamp is subjected to a very high temperature, vibration, thermal shock, a robust and holistic validation is required to ensure the functional and safety requirements. Despite its wide range of applications, the testing and validation methodologies required to effectively validate the strength and other aspects of the clamp are not fully defined. In the present work, the authors discuss the various design validation methods involved during the development of the V-band grooved clamp.
Technical Paper

A Particle Swarm Optimization Tool for Decoupling Automotive Powertrain Torque Roll Axis

2014-04-01
2014-01-1687
A typical powertrain mount design process starts with performing the system calculations to determine optimum mount parameters, viz. position, orientation and stiffness values to meet the desired NVH targets. Therefore, a 6 degrees of freedom lumped parameter system of powertrain and mounts is modelled in Matlab®. The approach is to decouple the torque roll axis mode from the remaining five rigid body modes so that the response to the torque pulses is predominantly ‘oscillations about Torque Roll Axis’. This is achieved by optimizing the above mount parameters within specified constraints so that ‘Rotation about the torque roll axis’ is one of the natural modes of vibration. The tool developed here uses ‘Particle Swarm Optimization(PSO) algorithm’ because of its ease of implementation and better convergence to the solution. The algorithm is programmed in TK solver®.
Journal Article

Acoustic Analysis of a Compact Muffler for Automotive Application

2017-06-17
2017-01-9550
A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
Technical Paper

Agricultural Tractor Hydraulic Lift Arm Assembly Design for Durability and Correlation with Physical Test

2016-02-01
2016-28-0237
A hydraulic power train assembly of an agricultural tractor is meant to lift the heavy implements during field operations and transportation. As it is a crucial member of the tractor for its usage, so the power train assembly needs a properly designed lift arm, rocker arm assembly with better strength and stiffness. There are a standard like IS12224, IS4468 which regulates the test method for hydraulic power and lift capacity of tractor and the layout of hydraulic three point linkage. Computer aided engineering techniques followed by laboratory testing have been deployed in the earlier stages of the product design & development itself to deliver the first time right products to the customer. In this paper, a virtual simulation process has been established to design an agricultural tractor hydraulic lift arm to meet the above requirements. A Design Verification Plan (DVP) has been developed consisting of 3 load cases.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

An Investigation into the Disruption of Circadian Rhythms using Blue Light for Automotive Applications

2015-04-14
2015-01-1706
Melatonin, otherwise popularly known as the “sleep hormone” is known to govern the human circadian rhythms. Current studies indicate that the generation of melatonin is impacted by the ambient light. The natural sleep inducing behavior during night and in darkness, is also due to the same phenomenon. Studies have shown that light of particular wavelengths in the visible spectrum have a higher effect on the amount of melatonin secreted by the human body. Blue light in the wavelengths of around 468 nm is known to inhibit the melatonin secretion, the most. This branch of science known as photobiology is in its nascent stage and is a matter of research pursued by neurologists, endocrinologists and other lighting researchers. Photobiology has several potential applications in the automotive industry, the principal one being driver drowsiness prevention.
Technical Paper

Analysis and Elimination of Howling Noise in Compact Utility Vehicle

2017-07-10
2017-28-1922
NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
Technical Paper

Application of Triz Methodology in Enhancing Product Life Cycle of an Automotive Diesel Engine

2024-04-09
2024-01-2457
This study employs TRIZ, the Theory of Inventive Problem Solving, to optimize a 2.2-liter automotive diesel engine facing challenges from system technology upgrades in the fuel injection system. This system requires the common rail pump. Two pumps were chosen and based on fuel quantity balance (QB) and drive ratio, one pump was finalized as the technical option, and it was studied in a detailed manner to identify the improving and worsening parameters with the help of a contradiction matrix and the 40 TRIZ principle, which are the main core ideas of TRIZ. The worsening parameters (drive torque) are reduced by 21.36%, and the chain load in the 0.5% worn chain condition also fulfills the system requirement. The chosen pump is further studied. This also helped to identify and categorize the system components of the main engineering system into subsystems and supersystems.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

Benefits of Variable Discharge Oil Pump on Performance of 3 Cylinder SI Engine

2017-01-10
2017-26-0051
Lubrication system is a critical factor for engine health. But it creates parasitic load and increased fuel consumption of the engine. The oil demand of an engine depends on engine speed, load, bearing clearances, operating temperature and engine's state of wear. Ideally, the oil pump should adapt the delivery volume flow to actual engine oil demand and should avoid unnecessary pumping of oil which causes increased power and fuel consumption. However in a conventional mechanical oil pump, there is no control on the oil flow and it is purely a function of operating speed. A variable discharge oil pump (VDOP) is an approach to reduce the parasitic losses wherein the oil flow is regulated based on the mechanical needs of the engine. This study is based on the results of a two stage VDOP installed on a 1.2 litre, 3 cylinder MPFI engine. The oil supply is regulated by a solenoid control which receives command from Engine Control Unit (ECU). The study was done in two stages.
Technical Paper

C-Shaped Synchronizer Spring-theoretical Analysis and Validation

2012-09-24
2012-01-2002
This paper presents the analysis and experimental validation of c-spring and its stiffness properties in the gear shift synchronizer system. A synchronizer assembly for a transmission comprises of a synchronizer hub carried by a torque delivery shaft and a cone clutch member carried by a gear and a synchronizer blocking ring. The gear shift sleeve is meshing over the teeth of the clutch hub. The c-spring is positioned in the inner circumference of the rim position of the clutch hub and strut keys will be positioned at the slots on the clutch hub, which are usually 120 degree apart. As the sleeve moves while gear shifting, it pushes down the strut keys which compress the C-spring radially inward; this gives the strut load. The strut keys, which are pushed down by the sleeve, will apply force on the c-spring from radial directions. Since the c-spring is in the shape of an arc it is assumed as a curved beam for the analysis.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Computational and Experimental Investigation of Different Bowl Geometries on a CRDi Engine to Improve NOx-PM Trade-Off and Fuel Efficiency

2014-10-13
2014-01-2646
One of the major challenges for automotive industry today is to reduce tailpipe emission without compromising on fuel economy especially with the EURO 6, RDE, LEV III emissions and CO2 norms coming up. In case of diesel engines, with the emission norms becoming stringent more and more, it's difficult to improve tradeoff between NOx and PM emissions. After treatment systems give some edge in terms of tail pipe emission reduction but not on the cost, fuel economy and system simplicity front. For diesel engines the compression ratio and design of the bowl geometry plays a crucial role in controlling emission and CO2. The target was to achieve EURO 6 tailpipe emissions with minimum dependency on after treatment. With the target after treatment conversion efficiency the engine out targets were framed. A study of different bowl geometries were made that would help achieve this target of improving reduced engine out emissions.
Technical Paper

Conceptual Design Proposal for Adapting D-Cycle Technology in Agricultural Tractor Engine

2022-03-29
2022-01-0600
This paper reviews application of D-Cycle technology to compact tractor diesel engine for improving efficiency & power. The study considers design challenges that are presented for accommodating D-Cycle technology in engine. The paper also covers resolving those challenges with established technical solutions. The study focuses on modifying conventional compact 4-stroke diesel engine with the intention of keeping design changes to a minimum level for incorporating differential stroke technology. Designing of vertically splitting lightweight piston crown which can be smoothly engaged and separated from main piston body without any impact, stem rod which connects piston crown with rocker arm, split connecting rod and rocker arm which is actuated by extra actuating camshaft in addition of present valvetrain camshaft, are covered. Lubrication of additional actuating camshaft is done by extending existing oil galleries.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Design Analysis and Development of Aluminium Cylinder Block with Slip-Fit Cylinder Liners for High Performance New Generation Passenger Car Diesel Engine

2023-04-11
2023-01-0442
The global automotive industry is growing rapidly in recent years and the market competition has increased drastically. There is a high demand for passenger car segment vehicles with high torque delivery and fuel economy for a pleasant drivability experience. Also, to meet the more stringent emission requirements, automakers are trying very hard to reduce the overall vehicle gross weight. In lowering both fuel consumption and CO2 generation, serious efforts have been made to reduce the overall engine weight. An engine cylinder block is generally considered to be the heaviest part within a complete engine and block alone accounts for 3-4% of the total weight of the average vehicle, thus playing a key role in weight reduction consideration. Aluminum casting alloys as a substitute for the traditional cast iron can mean a reduction in engine block weight between 40 and 55% [9], even if the lower strength of aluminum compared to grey cast iron is considered.
X