Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effect of Anti-Dive Suspension Geometry on Braking Stability

2022-09-19
2022-01-1172
Suspension plays a crucial role in stabilizing, comfort and performance of a vehicle. During vehicle braking operation, load transfer happens from rear axle to front axle resulting in shifting of vehicle’s center of gravity towards vehicle front for a momentarily duration which is called diving. This phenomenon leads to dropping of traction at rear wheel end resulting in lifting of rear axle with front wheel as pivot. This causes increase in front to rear weight ratio of vehicle system and compromising driver safety due to skidding and locking of rear wheel-end. To minimize this phenomenon’s affect, optimum anti-dive suspension geometry is used to have better rear wheel end traction resulting in improved braking stability.
Technical Paper

Improvement in the Brake Pedal Feel Comfort for Light Commercial Vehicles with Hydraulic Brake System

2021-09-22
2021-26-0515
Being a safety critical aggregate, every aspect of brake system is considered significant in vehicles operations. Along with optimum performance of brake system in terms of deceleration generation, brake pedal feel or brake feel is considered as one of the key elements while evaluating brake system of vehicles. There are many factors such as liner and drum condition, road surface, friction between linkages which impress the pedal feel. Out of these, in this paper we will be discussing the factors which influence the brake pedal feel in relation to the driver comfort and confidence building. Under optimum braking condition, brake operation must be completed with pedal effort not very less or not very high, brake pedal feel must be firm throughout the operation, in such a way that it will not create fatigue and at the same time it will give enough confidence to the driver while operating with acceptable travel.
X