Refine Your Search

Topic

Author

Search Results

Technical Paper

A Cost-Effective Approach to Attain Near-Vehicle Conditions in Coolant Circuit of Engine Test Bench

2022-10-05
2022-28-0084
With advancement of technologies, upgradation of validation procedures and equipment on engine dynamometer test bed is required to simulate environment similar to vehicle and achieve accurate test results. A coolant conditioning system helps in achieving desired temperatures of coolant in the circuit during engine validation. However, unlike radiator type cooling systems of vehicles, conventional coolant conditioning systems on engine test beds generate negative pressure in circuit which poses a risk of coolant boiling, loss of intended heat transfer and hence higher temperature in cylinder head which can be detrimental for durability of critical components like valves, valve seats etc. This paper encompasses a stepwise approach followed to attain near-vehicle coolant pressure conditions for a naturally aspirated engine. Coolant used for this experiment was 50:50 (by volume) ethylene glycol and water mixture.
Technical Paper

A Study of Engine Mount Optimisation of Three-Cylinder Engine through Multi-Body Dynamic Simulation and Its Verification by Vehicle Measurement

2015-01-14
2015-26-0126
Three-cylinder Engine without balancer shaft is a recent trend towards development of lightweight and fuel-efficient powertrain for passenger car. In addition, customer's expectation of superior NVH inside vehicle cabin is increasing day by day. Engine mounts address majority of the NVH issues related to transfer of vibration from engine to passenger cabin. Idle vibration isolation for a three-cylinder engine is a challenging task due to possibility of overlapping of Powertrain's rigid body modes with engine's firing frequency. This Overlapping of rigid body can be avoided either by modifying mount characteristic or by changing the position of mounts based on multi-body-dynamics (MBD) simulation. This paper explains about two types of engine mounting system for a front-wheel drive transversely mounted three-cylinder engine. The base vehicle was having three-point mounting system i.e. all three engine mounts were pre-loaded.
Technical Paper

Aerodynamic Design Optimization in Rear End of a Hatchback Passenger Vehicle

2019-03-25
2019-01-1430
Aerodynamic evaluation plays an important role in the new vehicle development process to meet the ever increasing demand of Fuel Economy (FE), superior aero acoustics and thermal performance. Computational Fluid Dynamics (CFD) is extensively used to evaluate the performance of the vehicle at early design stage to overcome cost of proto-parts, late design changes and for time line adherence. CFD is extensively used to optimize the vehicle’s shape, profiles and design features starting from the concept stage to improve the vehicle’s aerodynamic performance. Since the shape of the vehicle determines the flow behavior around it, the performance is different for hatchback, notchback and SUV type of vehicles. In a hatchback vehicle, the roof line is abruptly truncated at the end, which causes flow separation and increase in drag.
Technical Paper

Aerodynamic Development of Maruti Suzuki Vitara Brezza using CFD Simulations

2017-01-10
2017-26-0268
Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
Technical Paper

An Experimental Approach to Investigate the FEAD Cover Failure & Its Design Optimization

2024-01-16
2024-26-0371
In automotive Front End Accessory Drives (FEAD), the crankshaft supplies power to accessories like alternators, pumps, etc. FEAD undergoes forced vibration due to crankshaft excitation, dynamic tension fluctuations can cause the belt to slip on the accessory pulleys. By considering the criticality of the system, when engine mounting is longitudinally to the vehicle which makes it directly exposed to the air flow containing foreign particles which may cause the damage to the FEAD system and deteriorate the intended functionality. FEAD cover is introduced in the system to enhance belt-pully system functionality by restricting the entry of foreign particles during engine operation. This paper contains a study of FEAD cover failure and provides the stepwise approach to capture such issue during novel model development for 4 cylinder naturally aspirated engine during engine bench testing.
Technical Paper

Analysis of Thermal Coating on Engine Performance Parameters & Fuel Economy of a Small Size NA Spark Ignition Engine

2021-09-15
2021-28-0134
With strict upcoming regulation norms, it becomes a challenging task for automotive industry to develop highly efficient engine that meets all the regulation requirements. The focus of automakers is to utilize fuel energy in most efficient way and to reduce the energy loss from the engine to improve thermal efficiency. Heat loss to the cooling medium is one of the prime losses inside the combustion chamber. Thermal barrier coating is used to reduce heat losses across combustion chamber surfaces (Piston, head, valves and cylinder liner) as it provides good insulation because of the prominent properties of coating materials like low thermal conductivity, low heat capacity, high melting point etc. This paper presents application and impact of thermal swing coating on thermal efficiency. Thermal swing coating material follows gas temperature quickly throughout the cycle which reduces the temperature difference between gas and coating surface and thus reduces the heat loss.
Technical Paper

Application of Electromagnets in Windshield Wipers

2021-09-22
2021-26-0510
The most widely used type of windshield wiper system employs a coil spring for wiper arm pressure generation. This spring is fixed between the arm head (fixed part) and wiper arm (moving part) and the tension in the spring is responsible for pressure generation. The present arrangement although being unsophisticated design, has following drawbacks: Inability to change wiper arm pressure according to change in vehicle speed. Inability to provide constant arm pressure during the complete range of motion along varying curvature of windshield. Inability to reduce/remove the continuous pressure on wiper blade when vehicle is parked for long durations resulting in permanent deformation of wiper blade rubber. This paper describes how electromagnets can be used to overcome the above stated inherent limitations of the windshield wiper system. An electromagnet is a device which produces magnetic field on application of electric current.
Technical Paper

CAE Approach to Reduce Engine Mount Rumble Noise

2022-10-05
2022-28-0080
With the increasing competition in the automotive industry, customer experience & satisfaction is at the top of every organization's goals. The customers have evolved & NVH refinement has become the parameter for their decision making in buying a car. The major source of rumble noise in a vehicle is the induced vibrations due to combustion forces in an IC engine. These vibrations are then transferred to the vehicle body through engine mounts. Hence engine mounts play a key role in defining the NVH & the ride performance of any vehicle. However, it is infeasible to validate every mount design through the physical test as it will be both costly & time-consuming. But multiple design iterations can be verified by the CAE approach quite effectively. This paper focuses on the novel CAE approach to evaluate the mount vibrations due to engine dynamics. The process involves preparing a FEA model of the complete Powertrain system.
Technical Paper

CAE Transfer Path Analysis and Its Accuracy Evaluation Using a Validation Method

2024-04-09
2024-01-2740
In-cabin Noise at low frequency (due to engine or road excitation) is a major issue for NVH engineers. Usually, noise transfer function (NTF) analysis is carried out, due to absence of accurate actual loads for sound pressure level (SPL) analysis. But NTF analysis comes with the challenge of having too many paths (~20 trimmed body attachment locations: engine and suspension mounts, along with 3 directions for each) to work on, which is cumbersome. Physical test transfer path analysis (TPA) is a process of root cause analysis, by which critical contributing paths can be obtained for a problem peak frequency. In addition to that, loads at the attachment points of trimmed body of test vehicle can be derived. Both these outputs are conventionally used in CAE analysis to work on either NTF or SPL. The drawback of this conventional approach is that the critical bands and paths suggested are based on the problem peak frequency of test vehicle which may be different in CAE.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Characterization of Structure-Borne Road/Tire Noise Inside a Passenger Car Cabin Using Path Based Analysis

2013-11-27
2013-01-2858
Road/Tire noise is an important product quality criterion for passenger cars which are driving customers to decide upon the selection of a vehicle. Reduced engine noise and improvement in road conditions has resulted into more road/tire noise problem as average vehicle speed has gone up. Excitations from road surface travelling through the tire/suspension to vehicle body (structure-borne path) and air-pumping noise caused by tread patterns (air-borne paths) are the main contributor to tire noise issue inside the vehicle cabin [1]. A lot of emphasis is put on the component level design as well as its compliance with vehicle structure to reduce the cabin noise. The objective of this work is to establish a methodology for evaluating structure-borne road/tire noise by evaluating the tire structural behavior and its interface with the vehicle body and its suspension system and identifying the contributing critical paths.
Technical Paper

Design Methodology to Restrict Catalyst Theft in the Market Vehicles

2022-10-05
2022-28-0019
Automobile Catalyst are used to convert Harmful gases emitted by vehicle (CO, HC, and NOx) to less Harmful gas (CO2, H2O and N2), Catalyst Loading comprises of Platinum, Palladium and Rhodium (Rare earth metals) metal powders combined in slurry and wash-coated onto a ceramic brick. Ever since the introduction of BS6 Emissions norm (stricter emission regulation), Catalyst loading content has increased in all vehicles. The Price of these rare earth metal are increasing day by day. Typically, a BS6 regulation catalyst contains a few grams of loading content. In some vehicles there are more than one catalyst (due to regulation requirement) and in some cases catalysts are also located in the underbody, in such cases, Number and location of catalyst makes the vehicle an easy target for thieves. Recently local police authorities around the country have captured many catalysts theft gangs.
Technical Paper

Design Optimization of Front Hood Structure for Meeting Pedestrian Headform Protection in an Existing Vehicle

2019-04-02
2019-01-0615
Automotive industry today faces the unprecedented challenges both in terms of adapting to changing customer demands in terms of vehicle aesthetics, features or performance as well as meeting the mandatory regulatory requirements, which are being regularly upgraded and becoming stringent day by day. Vehicle hood, being part of vehicle front fascia, needs to fulfill the requirement of vehicle aesthetics as its primary condition. At the same time, every automobile manufacturer has a lineup of older platforms, which are in production and needs to comply with upcoming stricter safety norms, having a structure in under hood area designed as per older philosophy, which further reduces the space available for energy absorption. This makes the structure optimization in vehicle hood area much more challenging. Pedestrian protection - an upcoming regulation in India, has seen some major development in recent times.
Technical Paper

Design Optimization of Trunk Lid Torsion Bar Type Trunk Lid Pop Up Mechanism

2019-10-11
2019-28-0111
Trunk lid (TL) can be opened using hydraulic or pneumatic balancers, coil springs, torsion bars or combination of the above. TL Opening Mechanism specific to Trunk Lid Torsion Bar (TLTB) is being discussed in the paper. After de-latching, TL should open smoothly and stop at such a height that it is visible from driver seat. The system consists of a four bar linkage mechanism, in which the fixed link is formed by BIW Bracket. Connecting link, TL Hinge Arm and Torsion bar arm form the other three links. Hinge has its one end attached to TL and the other end to BIW bracket. Torsion bar arm transfers torque to TL hinge through the connecting link. Major challenges in designing TLTB mechanism are part tolerances, C.G position and Weight variations in individual parts, Torsion bar Raw Material variation, uncertain friction in the system etc.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Determination of the Polyurethane Parameters for Riding Comfort Evaluation in Automobile Seating Application

2019-04-02
2019-01-0931
Riding comfort for automobile seating can be classified into two categories, long time riding comfort and short term riding comfort. The attributes that govern the riding comfort includes static spring constant and energy lost due to hysteresis. The emerging trend towards long term riding comfort could be governed by the above mentioned factors. The hysteresis loss characteristic is related to Poly-Urethane (PU) properties used extensively in automotive seating application. The nature with which the energy is released considering the same material and varying the hardness directly contributes to the comfort analysis for automobile seating and vice versa. Two curves can define the same area but the loading and unloading trend for the two cases could be different and so be the riding comfort. A conclusion would be drawn by obtaining hysteresis loss rate by changing the different parameters (hardness, density). One parameter would be varied by keeping the others constant.
Technical Paper

Development of Real Time Mild Hybrid Simulation Model using Battery in Loop

2016-02-01
2016-28-0031
Battery modeling is of major concern going forward for Hybrid Electric Vehicle (HEV) and Electric vehicle (EV) modeling. The major issue lies in characterizing the battery power, Charge acceptance and reaction to sudden load changes (transient behavior) in relation to battery’s State of Charge (SOC). In particular modeling the battery is challenging task as it requires a lot of test data to understand and validate modeled chemical and electrical characteristics in various operating conditions. Hence, the one of the ways of simulating Battery based Hybrid System is to use battery Hardware-in-the-Loop Simulation (HILS) or simply known as Battery-in-Loop (BIL). With this approach hybrid vehicle or more precisely battery management system (BMS) development time and cost can be significantly reduced by eliminating the detailed battery modeling. To understand the effectiveness of this approach, Battery Hardware-in-Loop test setup was developed.
Technical Paper

Dynamic Strength Co-Simulation for Valve Train Mechanism Design Virtual Validation

2020-04-14
2020-01-0949
As the automotive market is very dynamic and vehicle manufactures try to reduce the vehicle development cycle time, more focus is being given to CAE simulation technologies to reduce the design cycle time and number of physical tests. CAE engineers are continuously working on improving the accuracy of CAE simulation, such as using flexible body dynamic simulation in place of linear static analysis. Strength calculation under dynamic condition is more accurate as compared to static condition as it gives more clear understanding of stress variation with motion, contacts and mass inertia. Failure has been observed in new development of valve train pivot screw under test conditions. As per linear static analysis, design was judged OK. Normal linear static analysis is a two stage process. In first stage loads are calculated by hand or peak loads are taken from multibody dynamics (MBD) rigid body analysis.
Technical Paper

Effect of Beam Layout and Specification on Side Door Strength of Passenger Cars: An Experimental Approach to Analyze Its Effect and Contribution to Door Strength.

2017-01-10
2017-26-0023
Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
Technical Paper

Effect of Fabric Parameters on Phenomena of Electrostatic Charge Generation

2019-04-02
2019-01-0464
Electrostatic charge generation in fabric is a common phenomenon. This phenomenon of charge generation & transfer of the same to human body is more in case of fabrics made of polyester yarns due to interface property of the material. The charge generation may result in attraction of dust on the fabric surface, clinginess & may also result in uncomfortable shock to the human body. This situation is attributed to various parameters such as fabric construction, yarn properties, yarn finish & various coating on the yarn. Since, polyester fabric is prime material used in seating; there have been many incidences of rubbing of seat fabric to human body, resulting in generation of static charge. This study focuses on understanding the effect of various fabric parameters on electrostatic charge generation. The study will also look into various potential solutions to reduce the charge generation with their merits and demerits.
X