Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

Air System Control for Advanced Diesel Engines

2007-04-16
2007-01-0970
In order to satisfy environmental regulations while maintaining strong performance and excellent fuel economy, advanced diesel engines are employing sophisticated air breathing systems. These include high pressure and low pressure EGR (Hybrid EGR), intake and exhaust throttling, and variable turbine geometry systems. In order to optimize the performance of these sub-systems, system level controls are necessary. This paper presents the design, benefits and test results of a model-based air system controller applied to an automotive diesel engine.
Technical Paper

Boost and EGR System for the Highly Premixed Diesel Combustion

2006-04-03
2006-01-0204
Advanced Diesel combustion strategies with the focus on the reduction of NOx and PM emission as well as fuel consumption need an increase of the EGR rate and therefore improved boost concepts. The suppression of the nitrogen oxide build up requires changes in the charge condition (charge temperature, EGR rate), which have to be realized by the gas exchange system. The gas exchange system of IAV's ADCS test engine was dimensioned with the help of the engine process simulation software THEMOS®. This paper shows simulation and test bench results of the potential to increase the EGR rate and the charge density at stationary and transient operation. The increase of both EGR rate and boost pressure, as well as the need for a better control of transient operation leads to greater requirements for the engine control system. The potential of the engine and its control system for an application to a demo vehicle will be assessed.
Technical Paper

EGR Cooler Fouling Reduction: A New Method for Assessment in Early Engine Development Phase

2022-03-29
2022-01-0589
High pressure EGR provides NOx emission reduction even at low exhaust temperatures. To maintain a safe EGR system operation over a required lifetime, the EGR cooler fouling must not exceed an allowable level, even if the engine is operated under worst-case conditions. A reliable fouling simulation model represents a valuable tool in the engine development process, which validates operating and calibration strategies regarding fouling tendency, helping to avoid fouling issues in a late development phase close to series production. Long-chained hydrocarbons in the exhaust gas essentially impact the fouling layer formation. Therefore, a simulation model requires reliable input data especially regarding mass flow of long-chained hydrocarbons transported into the cooler. There is a huge number of different hydrocarbon species in the exhaust gas, but their individual concentration typically is very low, close to the detection limit of standard in-situ measurement equipment like GC-MS.
Technical Paper

Exhaust-Emission Optimization of DI-Diesel Passenger Car Engine with High-Pressure Fuel Injection and EGR

1993-03-01
931035
This paper deals with a passenger-car direct-injection-diesel-engine with electronically controlled unit-injector. It is being investigated how far emissions and fuel-consumption can be influenced by exhaust-gas-recirculation (EGR) and pilot-injection especially when they are in combination with each other. The results reveal that the NOx-emission can be decreased much more by EGR than by pilot-injection. The lowest NOx-emissions however can only be reached by combination of EGR and pilot injection.. In the investigated area of the engine map a decrease in soot-emission can be obtained with rising EGR-rates by pilot-injection. On the other hand pilot-injection results in an increase of soot emission at high EGR-rates at the engine operating point N=2000 rpm, bmep=2 bar. Pilot-injection in combination with EGR effects no deterioration of fuel-consumption and HC-emission.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
Technical Paper

Influence of the Inlet Port and Combustion Chamber Configuration on the Lean-Burn Behaviour of a Spark-Ignition Gasoline Engine

1996-02-01
960608
The influence of different port designs on the generation of a swirl flow is described on the basis of stationary and non-stationary flow analyses. Subsequently, engine test bench analyses with a 3-valve one-cylinder engine were performed to assess the aforementioned port configurations with respect to their influence on the lean-burn behaviour. The most favourable port design was then used to analyse various combustion chamber shapes in order to further improve the engine behaviour during lean-burn operation and to select the most promising combustion chamber variant. Finally, the port and combustion chamber configurations thus identified were applied in vehicle simulation tests with lean-burn and EGR-burn operation to check the emission behaviour for compliance with the future European level 3 emission limits.
Technical Paper

The New 4-Valve 6 Cylinder 3,0 Liter Mercedes-Benz Diesel Engine for the Executive Class Passenger Vehicle

1993-10-01
932875
After the introduction of four-valve technology for gasoline powered passenger cars, Mercedes-Benz consistently developed this technology also for Diesel engines. Based on the proven success of the prechamber combustion system, this new Diesel engine generation, which includes 4, 5 and 6-cylinder naturally-aspirated engines, will be the first four-valve Diesel engines to be installed in passenger cars. The naturally aspirated 3.0 liter 6-cylinder in-line engine which represents the high end of this generation will be offered for sale in all 50 states of the USA in the Executive Class models starting on January 1, 1994. Four-valve technology allows the prechamber to be located centrally between the intake and exhaust valves which results in a major improvement of the combustion process. In addition, this 6-cylinder engine has a resonance intake system controlled by two butterfly valves to maximize the volumetric efficiency of the engine.
Journal Article

Zero-Dimensional Modeling of Combustion and Heat Release Rate in DI Diesel Engines

2012-04-16
2012-01-1065
Zero-dimensional heat release rate models have the advantage of being both easy to handle and computationally efficient. In addition, they are capable of predicting the effects of important engine parameters on the combustion process. In this study, a zero-dimensional combustion model based on physical and chemical sub-models for local processes like injection, spray formation, ignition and combustion is presented. In terms of injection simulation, the presented model accounts for a phenomenological nozzle flow model considering the nozzle passage inlet configuration and an approach for modeling the characteristics of the Diesel spray and consequently the mixing process. A formulation for modeling the effects of intake swirl flow pattern, squish flow and injection characteristics on the in-cylinder turbulent kinetic energy is presented and compared with the CFD simulation results.
X