Refine Your Search

Search Results

Viewing 1 to 19 of 19
Technical Paper

A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine

2007-04-16
2007-01-1411
In developing a direct injection gasoline engine, the in-cylinder fuel air mixing is key to good performance and emissions. High speed visualization in an optically accessible single cylinder engine for direct injection gasoline engine applications is an effective tool to reveal the fuel spray pattern effect on mixture formation The fuel injectors in this study employ the unique multi-hole turbulence nozzles in a PFI-like (Port Fuel Injection) fuel system architecture specifically developed as a Low Pressure Direct Injection (LPDI) fuel injection system. In this study, three injector sprays with a narrow 40° spray angle, a 60°spray angle with 5°offset angle, and a wide 80° spray angle with 10° offset angle were evaluated. Image processing algorithms were developed to analyze the nature of in-cylinder fuel-air mixing and the extent of fuel spray impingement on the cylinder wall.
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

An Experimental Study on the Factors Affecting Ethanol Ignition Delay Times in a Rapid Compression Machine

2019-04-02
2019-01-0576
Ignition delay, using a rapid compression machine (RCM), is defined as the time period between the end of compression and the maximum rate of pressure rise due to combustion, at a given compressed condition of temperature and pressure. The same compressed conditions can be reached by a variety of combinations of compression ratio, initial temperature, initial pressure, diluent gas composition, etc. It has been assumed that the value of ignition delay, for a given fuel and at a given set of compressed conditions, would be the same, irrespective of the variety of the above-mentioned combinations that were used to achieve the compressed conditions. In this study, a range of initial conditions and compression ratios are studied to determine their effect on ignition delay time and to show how ignition delay time can differ even at the same compressed conditions.
Technical Paper

CFD Modeling of an Auxiliary Fueled Turbulent Jet Ignition System in a Rapid Compression Machine

2016-04-05
2016-01-0599
Three-dimensional numerical simulation of the turbulent jet ignition combustion process of a premixed methane-air mixture in a Rapid Compression Machine (RCM) was performed using the Converge computational software. Turbulent jet ignition is a prechamber initiated combustion system that can replace the spark plug in a spark ignition engine. The prechamber is a small volume chamber where an injector and spark plug are located and is connected to the main combustion chamber via one or multiple small orifices. Turbulent jet ignition is capable of enabling low temperature combustion, through either lean or dilute combustion. A RANS model, which included a k-ε turbulence model to solve the mean flow and the SAGE chemistry solver with a reduced methane mechanism to solve the chemistry, was used to model the turbulent jet ignition system.
Journal Article

Comparison of Excess Air (Lean) vs EGR Diluted Operation in a Pre-Chamber Air/Fuel Scavenged Dual Mode, Turbulent Jet Ignition Engine at High Dilution Rate (~40%)

2021-04-06
2021-01-0455
Charge dilution is widely considered as one of the leading strategies to realize further improvement in thermal efficiency from current generation spark ignition engines. While dilution with excess air (lean burn operation) provides substantial thermal efficiency benefits, drastically diminished NOx conversion efficiency of the widely used three-way-catalyst (TWC) during off-stoichiometric/lean burn operation makes the lean combustion rather impractical, especially for automotive applications. A more viable alternative to lean operation is the dilution with EGR. The problem with EGR dilution has been the substantially lower dilution tolerance limit with EGR and a consequent drop in thermal efficiency compared to excess air/lean operation. This is particularly applicable to the pre-chamber jet ignition technologies with considerably higher lean burn capabilities but much lower EGR tolerance due to the presence of a high fraction of residuals inside the pre-chamber.
Technical Paper

Dynamic Stage of Combustion in a Direct Injection Methanol Fueled Engine

2002-03-04
2002-01-0998
The paper is based on the premise that the sole purpose of combustion in piston engines is to generate pressure for pushing the expansion process away from the compression process (both expressed in terms of appropriate polytropes) to create a work producing cycle. This essential process, referred to as the dynamic stage of combustion, is carved out of the cycle and its salient properties deduced from the measured pressure profile, as a solution of an inverse problem: deduction of information on an action from its outcome. An analytical technique, construed for this purpose, is first presented and, then, applied to a direct injection, spark-ignition, methanol fueled four-stroke engine.
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Laminar Burning Velocities of Diluted Stoichiometric Hydrogen/Air Mixtures

2023-04-11
2023-01-0331
Since its implementation, exhaust gas recirculation has proven to be a reliable technique to control NOx emissions by lowering combustion temperature. Dilution with exhaust gas recirculation, whether in internal combustion engines or sequential-staged gas turbine combustors, affects flame reactivity and stability, which are related to the heat release rate and engine power. Another way to control emissions is to use hydrogen as a carbon-free alternative fuel, which is considered a milestone in the energy-decarbonization journey. However, the high reactivity of hydrogen is one of its hurdles and understanding this effect on laminar burning velocity is important. Flame propagation and burning velocity control the mixture reactivity and exothermicity and are related to abnormal combustion phenomena, such as flashback and knock. Therefore, understanding the effect of exhaust gas addition on the laminar burning velocity of hydrogen/air mixtures is imperative for engine design.
Journal Article

Laminar Flame Speeds of Premixed Iso-Octane/Air Flames at High Temperatures with CO2 Dilution

2019-04-02
2019-01-0572
Spherically expanding flames are employed to measure the laminar flame speed of premixed iso-octane/air mixtures at elevated temperatures through both experiments and numerical simulations. Iso-octane (2,2,4-trimethlypentane) is an important gasoline primary reference fuel (PRF). While most studies on laminar burning velocity of iso-octane focus on low temperatures (less than 400 K), the experiments here were conducted in an optically accessible constant volume combustion chamber between 373 K-473 K, at a pressure of 1 bar, and from ϕ=0.8 to ϕ=1.6. The effect of diluent is investigated through the addition of 15% CO2 dilution in order to simulate the effect of exhaust gas recirculation. The decreased reactivity with diluent addition reduces mixture reactivity, which can reduce the propensity for knock in spark ignition engines. All laminar flame speeds were calculated using the constant pressure method enabled via schlieren visualization of the spherically propagating flame front.
Technical Paper

Modeling of Piston Ring-Cylinder Bore-Piston Groove Contact

2015-04-14
2015-01-1724
A three-dimensional piston ring model has been developed using finite element method with eight-node hexahedral elements. The model predicts the piston ring conformability with the cylinder wall as well as the separation gap between the interfaces if existing in the radial direction. In addition to the radial interaction between the ring front face and the cylinder wall, the model also predicts the contact between the ring and groove sides in the axial direction. This means, the ring axial lift, ring twist, contact forces with the groove sides along the circumferential direction are all calculated simultaneously with the radial conformability prediction. The ring/groove side contact can be found for scraper ring at static condition, which is widely used as the second compression ring in a ring pack. Thermal load is believed having significant influence on the ring pack performance.
Technical Paper

Multidimensional Predictions of Methanol Combustion in a High-Compression DI Engine

2003-10-27
2003-01-3133
Numerical simulations of lean Methanol combustion in a four-stroke internal combustion engine were conducted on a high-compression ratio engine. The engine had a removable integral injector ignition source insert that allowed changing the head dome volume, and the location of the spark plug relative to the fuel injector. It had two intake valves and two exhaust ports. The intake ports were designed so the airflow into the engine exhibited no tumble or swirl motions in the cylinder. Three different engine configurations were considered: One configuration had a flat head and piston, and the other two had a hemispherical combustion chamber in the cylinder head and a hemispherical bowl in the piston, with different volumes. The relative equivalence ratio (Lambda), injection timing and ignition timing were varied to determine the operating range for each configuration. Lambda (λ) values from 1.5 to 2.75 were considered.
Journal Article

Optical Engine Operation to Attain Piston Temperatures Representative of Metal Engine Conditions

2017-03-28
2017-01-0619
Piston temperature plays a major role in determining details of fuel spray vaporization, fuel film deposition and the resulting combustion in direct-injection engines. Due to different heat transfer properties that occur in optical and all-metal engines, it becomes an inevitable requirement to verify the piston temperatures in both engine configurations before carrying out optical engine studies. A novel Spot Infrared-based Temperature (SIR-T) technique was developed to measure the piston window temperature in an optical engine. Chromium spots of 200 nm thickness were vacuum-arc deposited at different locations on a sapphire window. An infrared (IR) camera was used to record the intensity of radiation emitted by the deposited spots. From a set of calibration experiments, a relation was established between the IR camera measurements of these spots and the surface temperature measured by a thermocouple.
Technical Paper

Parameterization and FEA Approach for the Assessment of Piston Characteristics

2006-04-03
2006-01-0429
Elastohydrodynamic lubrication, piston dynamics and friction are important characteristics determining the performance and efficiency of an internal combustion engine. This paper presents a finite element analysis on a production piston of a gasoline engine performed using commercial software, the COSMOSDesignStar, and a comprehensive cylinder-kit simulation software, the CASE, to demonstrate the advantages of using a reduced, parameterized model analysis in the assessment of piston design characteristics. The full piston model is parameterized according to the CASE specifications. The two are analyzed and compared in the COSMOSDesignStar, considering thermal and mechanical loads. The region of interest is the skirt area on the thrust and anti-thrust sides of the piston.
Technical Paper

Pressure Diagnostics of Closed System in a Direct Injection Spark Ignition Engine

2003-03-03
2003-01-0723
The sole purpose of combustion in a piston engine is to generate pressure in order to push the piston and produce work. Pressure diagnostics provides means to deduce data on the execution of the exothermic process of combustion in an engine cylinder from a measured pressure profile. Its task is that of an inverse problem: evaluation of the mechanism of a system from its measured output. The dynamic properties of the closed system in a piston engine are expressed in terms of a dynamic stage - the transition between the processes of compression and expansion. All the phenomena taking place in its course were analyzed in the predecessor of this paper, SAE 2002-01-0998. Here, on one hand, its concept is restricted to the purely dynamic effects, while on the other, the transformation of system components, taking place in the course of the exothermic chemical reaction to raise pressure, are taken into account by the exothermic stage.
Technical Paper

Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization

2012-04-16
2012-01-0823
Natural gas is a promising alternative fuel as it is affordable, available worldwide, has high knock resistance and low carbon content. This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas at several air to fuel ratios and speed-load operating points. In addition, Turbulent Jet Ignition optical images are compared to the baseline spark ignition images at the world-wide mapping point (1500 rev/min, 3.3 bar IMEPn) in order to provide insight into the relatively unknown phenomenon of Turbulent Jet Ignition combustion. Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines found in current passenger vehicles. This next generation pre-chamber design simply replaces the spark plug in a conventional spark ignition engine.
Technical Paper

The Effect of Ring-Groove Geometry on Engine Cylinder-Kit Assembly Using Three-Dimensional Multiphase Physics-Based Modeling Methodology - Part II

2021-04-06
2021-01-0645
Cylinder-kit tribology has been a significant focus in developing internal combustion engines of lower emission, reduced friction and oil consumption, and higher efficiency. This work addresses the impact of ring-groove geometry on oil (liquid oil and oil vapor) transport and combustion gas flow in the cylinder kit, using a dynamic three-dimensional multiphase modeling methodology during the four-stroke cycle of a piston engine. The ring and groove geometry, along with the temperature and pressure conditions at the interface between piston and liner, trigger the oil and gas (combustion gases and oil vapor) transport. A study of the second ring dynamics is presented to investigate the effect of negative ring twist on the three-dimensional fluid flow physics. The oil (liquid oil and oil vapor) transport and combustion gas flow processes through the piston ring pack for the twisted and untwisted geometry configurations are compared.
Journal Article

Three-Dimensional Multi-phase Physics-Based Modeling Methodology to Study Engine Cylinder-kit Assembly Tribology and Design Considerations- Part I

2020-09-15
2020-01-2230
Understanding cylinder-kit tribology is pivotal to durability, emission management, reduced oil consumption, and efficiency of the internal combustion engine. This work addresses the understanding of the fundamental aspects of oil transport and combustion gas flow in the cylinder kit, using simulation tools and high-performance computing. A dynamic three-dimensional multi-phase, multi-component modeling methodology is demonstrated to study cylinder-kit assembly tribology during the four-stroke cycle of a piston engine. The percentage of oil and gas transported through different regions of the piston ring pack is predicted, and the mechanisms behind this transport are analyzed. The velocity field shows substantial circumferential flow in the piston ring pack, leading to blowback into the combustion chamber during the expansion stroke.
Technical Paper

Tribological Performance Assessment of Abradable Powder Coated Pistons Considering Piston Skirt Geometry and Surface Topography

2021-09-21
2021-01-1231
Surface coatings are one of the most widely used routes to enhance the tribological properties of cylinder kits due to effective sealing capability with low friction coefficient and high wear resistance. In the current study, we have conducted the surface texture characterization of the coating on piston skirts and evaluated the impact of a novel Abradable Powder Coating (APC) on cylinder-kit performance in comparison to stock pistons. The surface texture and characteristic properties varying across the piston skirt are obtained and analyzed via a 3D optical profiler and OmniSurf3D software. The engine operating conditions are found through a combination of measurements, testing, and a calibrated GT-Power model. The variable surface properties along with other dimensions, thermodynamic attributes, flow characteristics and material properties are used to build a model in CASE (Cylinder-kit Analysis System for Engines)- PISTON for both an APC coated piston and a stock piston.
Journal Article

Visualization of Propane and Natural Gas Spark Ignition and Turbulent Jet Ignition Combustion

2012-10-23
2012-32-0002
This study focuses on the combustion visualization of spark ignition combustion in an optical single cylinder engine using natural gas and propane at several air to fuel ratios and speed-load operating points. Propane and natural gas fuels were compared as they are the most promising gaseous alternative fuels for reciprocating powertrains, with both fuels beginning to find wide market penetration on the fleet level across many regions of the world. Additionally, when compared to gasoline, these gaseous fuels are affordable, have high knock resistance and relatively low carbon content and they do not suffer from the complex re-fueling and storage problems associated with hydrogen.
X