Refine Your Search

Topic

Author

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

A Novel Capability for Crush Testing Crash Energy Management Structures at Intermediate Rates

2002-06-03
2002-01-1954
The crush performance of lightweight composite automotive structures varies significantly between static and dynamic test conditions. This paper discusses the development of a new dynamic testing facility that can be used to characterize crash performance at high loads and constant speed. Previous research results from the Energy Management Working Group (EMWG) of the Automotive Composites Consortium (ACC) showed that the static crush resistance of composite tubes can be significantly greater than dynamic crush results at speeds greater than 2 m/s. The new testing facility will provide the unique capability to crush structures at high loads in the intermediate velocity range. A novel machine control system was designed and projections of the machine performance indicate its compliance with the desired test tolerances. The test machine will be part of a national user facility at the Oak Ridge National Laboratory (ORNL) and will be available for use in the summer of 2002.
Technical Paper

A Novel Methodology to Characterize the Thermal Behavior of Automotive Seats

2021-04-06
2021-01-0204
An automobile seat’s thermal performance can be challenging to quantify since it requires comprehensive human subject testing. Seat manufacturers must rely on subjective ratings to understand how the construction of a seat and its underlying heating and cooling technology may compare to other seats. Other factors may influence seat ratings published by global marketing information services companies (e.g., JD Power and Associates). In particular, occupants may be biased by the vehicle class in which a seat is installed and by how much the contribution of a specific vehicle’s HVAC system performance affects the perception of seat thermal comfort. Therefore, there is a need for an objective testing methodology that does not rely on human participants but is still capable of producing a thermal performance rating in terms of established thermal comfort scales.
Journal Article

A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods

2010-04-12
2010-01-1266
Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple “cold” start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Assessment of CFD Methods for Large Diesel Engines Equipped with a Common Rail Injection System

2000-03-06
2000-01-0948
A KIVA-based CFD tool has been utilized to simulate the effect of a Common-Rail injection system applied to a large, uniflow-scavenged, two-stroke diesel engine. In particular, predictions for variations of injection pressure and injection duration have been validated with experimental data. The computational models have been evaluated according to their predictive capabilities of the combustion behavior reflected by the pressure and heat release rate history and the effects on nitric oxide formation and wall temperature trends. In general, the predicted trends are in good agreement with the experimental observations, thus demonstrating the potential of CFD as a design tool for the development of large diesel engines equipped with Common-Rail injection. Existing deficiencies are identified and can be explained in terms of model limitations, specifically with respect to the description of turbulence and combustion chemistry.
Technical Paper

Autonomous Vehicle Sensor Suite Data with Ground Truth Trajectories for Algorithm Development and Evaluation

2018-04-03
2018-01-0042
This paper describes a multi-sensor data set, suitable for testing algorithms to detect and track pedestrians and cyclists, with an autonomous vehicle’s sensor suite. The data set can be used to evaluate the benefit of fused sensing algorithms, and provides ground truth trajectories of pedestrians, cyclists, and other vehicles for objective evaluation of track accuracy. One of the principal bottlenecks for sensing and perception algorithm development is the ability to evaluate tracking algorithms against ground truth data. By ground truth we mean independent knowledge of the position, size, speed, heading, and class of objects of interest in complex operational environments. Our goal was to execute a data collection campaign at an urban test track in which trajectories of moving objects of interest are measured with auxiliary instrumentation, in conjunction with several autonomous vehicles (AV) with a full sensor suite of radar, lidar, and cameras.
Technical Paper

Axial NO2 Utilization Measurements within a Partial Flow Filter during Passive Regeneration

2017-03-28
2017-01-0988
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with alternating open and plugged channels. A SpaciMS [1] instrument was used to measure the axial NO2 profiles within adjacent open and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the open and plugged channels, the axial soot load profile history could be assessed.
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Journal Article

Combustion Studies with FACE Diesel Fuels: A Literature Review

2012-09-10
2012-01-1688
The CRC Fuels for Advanced Combustion Engines (FACE) Working Group has provided a matrix of experimental diesel fuels for use in studies on the effects of three parameters, Cetane number (CN), aromatics content, and 90 vol% distillation temperature (T90), on combustion and emissions characteristics of advanced combustion strategies. Various types of fuel analyses and engine experiments were performed in well-known research institutes. This paper reviews a collection of research findings obtained with these nine fuels. An extensive collection of analyses were performed by members of the FACE working group on the FACE diesel fuels as a means of aiding in understanding the linkage between fuel properties and combustion and emissions performance. These analyses included non-traditional chemical techniques as well as established ASTM tests. In a few cases, both ASTM tests and advanced analyses agreed that some design variables differed from their target values when the fuels were produced.
Technical Paper

Computationally Efficient Reduced-Order Powertrain Model of a Multi-Mode Plug-In Hybrid Electric Vehicle for Connected and Automated Vehicles

2019-04-02
2019-01-1210
This paper presents the development of a reduced-order powertrain model for energy and SOC estimation of a multi-mode plug-in hybrid electric vehicle using only vehicle speed profile and route elevation as inputs. Such a model is intended to overcome the computational inefficiencies of higher fidelity powertrain and vehicle models in short and long horizon energy optimization efforts such as Coordinated Adaptive Cruise Control (CACC), Eco Approach and Departure (EcoAND), Eco Routing, and PHEV mode blending. The reduced-order powertrain model enables Connected and Automated Vehicles (CAVs) to utilize the onboard sensor and connected data to quickly react and plan their maneuvers to highly dynamic road conditions with minimal computational resources.
Technical Paper

Convergence of Laboratory Simulation Test Systems

1998-02-23
981018
Laboratory Simulation Testing is widely accepted as an effective tool for validation of automotive designs. In a simulation test, response data are measured whilst a vehicle is in service or tested at a proving ground. These responses are reproduced in the laboratory by mounting the vehicle or a subassembly of the vehicle in a test rig and applying force and displacements by servo hydraulic actuators. The data required as an input to the servo hydraulics, the drive files, are determined by an iterative procedure which overcomes the non linearity in the test specimen and the test rig system. Under certain circumstances, the iteration does not converge, converges too slowly or converges and then diverges. This paper uses mathematical and computer models in a study of the reasons why systems fail to convergence and makes recommendations about the management of the simulation test.
Technical Paper

Correlating Laboratory Oil Aerosol Coking Rig Tests to Diesel Engine Tests to Understand the Mechanisms Responsible for Turbocharger Compressor Coking

2017-03-28
2017-01-0887
Deposit formation within turbocharger compressor housings can lead to compressor efficiency degradation. This loss of turbo efficiency may degrade fuel economy and increase CO2 and NOx emissions. To understand the role that engine oil composition and formulation play in deposit formation, five different lubricants were run in a fired engine test while monitoring turbocharger compressor efficiency over time. Base stock group, additive package, and viscosity modifier treat rate were varied in the lubricants tested. After each test was completed the turbocharger compressor cover and back plate deposits were characterized. A laboratory oil mist coking rig has also been constructed, which generated deposits having the same characteristics as those from the engine tests. By analyzing results from both lab and engine tests, correlations between deposit characteristics and their effect on compressor efficiency were observed.
Technical Paper

DOE Plant-Wide Energy Assessment Results Related to the U.S. Automotive Industry

2006-04-03
2006-01-0594
Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Energy's Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
Technical Paper

Determination of Vehicle Frontal Area Using Image Processing

2013-04-08
2013-01-0203
The projected frontal area of a vehicle has a significant impact on aerodynamic drag, and thus is an important parameter, for vehicle development, benchmarking, and modeling. However, determining vehicle frontal area can be tedious, time consuming, expensive, or inaccurate. Existing methods include analysis of engineering drawings, vehicle projections, 3D scanners, planimeter measurements from photographs, and estimations using vehicle dimensions. Currently accepted approximation methods can be somewhat unreliable. This study focuses on introducing a method to find vehicle frontal area using digital images and subtraction functions via MATLABs' Image Processing Toolbox. In addition to an overview of the method, this paper describes several variables that were examined to optimize and improve the process such as camera position, surface glare, and vehicle shadow effects.
X