Refine Your Search

Topic

Author

Search Results

Technical Paper

A Critical Analysis of Traffic Accident Data

1975-02-01
750916
General agreement exists that the ultimate goals of traffic accident research are to reduce fatality, mitigate injury and decrease economic loss to society. Although massive quantities of data have been collected in local, national and international programs, attempts by analysts to use these data to explore ideas or support hypotheses have been met by a variety of problems. Specifically, the coded variables in the different files are not consistent and little information on accident etiology is collected. Examples of the inadequacies of present data in terms of the collected and coded variables are shown. The vehicular, environmental and human (consisting of human factors and injury factors) variables are disproportionately represented in most existing data files in terms of recognized statistical evidence of accident causation. A systems approach is needed to identify critical, currently neglected variables and develop units of measurement and data collection procedures.
Technical Paper

A Data-Driven Approach to Determine the Single Droplet Post-Impingement Pattern on a Dry Wall Using Statistical Machine Learning Classification Methods

2021-04-06
2021-01-0552
The study of spray-wall interaction is of great importance to understand the dynamics during fuel-surface impingement process in modern internal combustion engines. The identification of droplet post-impingement pattern (contact, transition, non-contact) and droplet characteristics can quantitatively provide an estimation of energy transfer for spray-wall interaction, thus further influencing air-fuel mixing and emissions under combusting conditions. Theoretical criteria of single droplet post-impingement pattern on a dry wall have been experimentally and numerically studied by many researchers to quantify the hydrodynamic droplet behaviors. However, apart from model fidelity, another issue is the scalability. A theoretical criterion developed from one case might not be well suited to another scenario. In this paper, a data-driven approach for single droplet-dry wall post-impingement pattern utilizing arithmetical machine learning classification methods is proposed and demonstrated.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Journal Article

A Large-Scale Robotic System for Depainting Advanced Fighter Aircraft

2011-10-18
2011-01-2652
The general benefits of automation are well documented. Order of magnitude improvements are achievable in processing speeds, production rates, and efficiency. Other benefits include improved process consistency (inversely, reduced process variation), reduced waste and energy consumption, and risk reduction to operators. These benefits are especially true for the automation of the aerospace paint removal (or "depaint") processes. Southwest Research Institute® (SwRI®) developed and implemented two systems in the early 1990s for depainting full-body fighter aircraft at Robins Air Force Base (AFB) at Warner Robins, Georgia, and Hill AFB at Ogden, Utah. These systems have been in production use, almost continuously for approximately 20 years, for the depainting of the F-15 Eagle and the F-16 Falcon fighter aircraft, respectively.
Technical Paper

A Parallel Hybrid Drivetrain

1999-08-17
1999-01-2928
Next generation vehicles are under environmental and economic pressure to reduce emissions and increase fuel economy, while maintaining the same ride and performance characteristics of present day combustion engine automobiles. This has prompted researchers to investigate hybrid vehicles as one possible solution to this challenge. At Southwest Research Institute (SwRI), a unique parallel hybrid drivetrain was designed and prototyped. This hybrid drivetrain alleviates the disadvantages of series hybrid drivetrains by directly coupling the driving wheels to two power sources, namely an engine and an electric motor. At the same time, the design allows the engine speed to be decoupled from the vehicle speed, allowing the engine to operate at its most efficient state. This paper describes the drivetrain, its components, and the test stand that was assembled to test the parallel hybrid drivetrain.
Technical Paper

Alternative Fuels: Development of a Biodiesel B20 Purchase Description

2000-12-04
2000-01-3428
Alternative fuels made from materials other than petroleum are available for use in alternative fueled vehicles (AFVs) and some conventional vehicles. Liquid fuels such as biodiesel could be used in U.S. Army or other Military/Federal Government compression ignition (CI) engine powered vehicles. The military combat/tactical fleet is exempt from Federal Government mandates to use alternative fueled vehicles and has adopted JP-8/JP-5 jet fuel as the primary military fuel. The Army non-tactical fleet and other Federal nonexempt CI engine powered vehicles are possible candidates for using biodiesel. Inclusion of biodiesel as an alternative fuel qualifying for alternative fueled vehicle credits for fleets required to meet AFV requirements has allowed for its use at 20 (minimum) percent biodiesel in petroleum diesel fuel. Alternative fuels are being considered for the 21st Century Truck (21T) program. [1]
Technical Paper

Analysis For A Parallel Four-Wheel Propane Electric Hybrid Vehicle

1999-08-17
1999-01-2907
This paper analyzes the hybridization of a conventionally powered light duty front wheel drive pick up truck by adding an electric motor driven rear axle. Also studied are the effects of using propane fuel instead of gasoline. This hybrid powertrain configuration can be described as a parallel hybrid electric vehicle. Supervisory power management control has been developed to best determine the proportion of load to be provided by the engine and/or electric motor. To perform these analyses, a simulation tool (computer model of the powertrain components) was developed using MATLAB/SIMULINK'. The models account for the thermal and mechanical efficiencies of the components and are designed to develop control strategies for meeting road loads with improved fuel economy and reduced emissions. Results of this study have shown that fuel economy can be improved and emissions reduced using commercially available components (motor, rear axle, and lead acid batteries).
Technical Paper

Comparison of Petroleum and Alternate-Source Diesel Fuel Effects on Light-Duty Diesel Emissions

1983-10-31
831712
Exhaust emission data from several fuel effects studies were normalized and subjected to statistical analyses. The goal of this work was to determine whether emission effects of property variation in alternate-source fuels were similar, less pronounced, or more pronounced than the effects of property variation in petroleum fuels. A literature search was conducted, reviewing hundreds of studies and finally selecting nine which dealt with fuel property effects on emissions. From these studies, 15 test cases were reported. Due to the wide variety of vehicles, fuels, test cycles, and measurement techniques used in the studies, a method to relate them all in terms of general trends was developed. Statistics and methods used included bivariate correlation coefficients, regression analysis, scattergrams and goodness-of-fit determinations.
Technical Paper

Comprehensive Electric Motor Cooling Modeling

2022-03-29
2022-01-0724
A comprehensive 3D Computational Fluid Dynamics (CFD) with conjugate heat transfer (CHT) tool was developed in-house for a Tesla Model 3 electric motor. To accurately predict the power loss (heat generation) inside the electric motor, the electromagnetic process was solved to obtain the spatial-dependent power loss in the rotor, stator, and windings. CFD was utilized for simulating the coolant oil flow using the multiphase Volume of Fluid (VOF) approach and Finite Element Analysis (FEA) was used for simulating the thermal process within the solid domains. These three separate analysis modules (electromagnetic, fluid flow and thermal solid) were coupled strongly to enable two-way interactions. Thermal results obtained from the final converged simulations were compared to the test data obtained from the thermocouple measurements for the two most representative operating points of this e-motor and showed reasonable predictions with similar trend as observed in the test.
Journal Article

Control Strategy and Energy Recovery Potential for P2 Parallel Hybrid Step Gear Automatic Transmissions

2019-04-02
2019-01-1302
The purpose of this investigation is to present a control strategy and energy recovery potential for P2 parallel hybrid step gear automatic transmissions. The automatic transmission types considered for the investigation are rear wheel drive 8 speed dual clutch transmission and 8 speed planetary automatic equipped each equipped with an electric motor between the engine and transmission. The governing equations of clutch-to-clutch upshift controls are presented and are identical for each transmission type. Various strategies are explored for executing the upshift under a range of input torques, shift times and engine torque management approaches. The differences in energy recovery potential based upon control strategy is explored piecewise as well as through a DFSS study. On a comprehensive drive cycle consisting of FTP 75, US06 and HWFET test cycles, it is shown that upshift regen torque management can be equivalent to approximately 0.8% of the total fuel energy used.
Technical Paper

Control System Development for Retrofit Automated Manual Transmissions

2009-12-13
2009-28-0001
For transmission suppliers tooled primarily for producing manual transmissions, retrofitting a manual transmission with actuators and a controller is business viable. It offers a low cost convenience for the consumer without losing fuel economy when compared to torque converter type automatics. For heavy duty truck fleets even the estimated 3% gain in fuel economy that the Automated Manual Transmission (AMT) offers over the manual transmission can result in lower operational costs. This paper provides a case study using a light duty transmission retrofitted with electric actuation for gears and the clutch. A high level description of the control algorithms and hardware is included. Clutch control is the most significant component of the AMT controller and it is addressed in detail during operations such as vehicle launch from rest, launch from coast and launch on grades.
Journal Article

Coordinated Torque, Energy and Clutch Control Strategy for Downshifts in P2 Parallel xHEV Powertrains

2021-04-06
2021-01-0696
This paper describes a methodology for investigating the controls coordination of clutch and propulsion torque sources relative to clutch energy, electrification energy consumption and output torque profile for offgoing controlled downshifts in P2 parallel xHEV powertrain configurations. The focus is on an 8 speed planetary automatic transmission, but the approach is equally applicable to any powerflow design with clutch-to-clutch shifting. The modeling technique is for an overall control strategy relative to achieving a targeted transmission input speed profile. A reduced order model of the transmission system is presented that accounts for input shaft acceleration and compensation of inertial contributions to offgoing clutch torque and transmission output torque.
Technical Paper

Design Improvements of an Automatic Tire Inflation System for Long Haul Trucks

1995-11-01
952591
An Automatic Tire Inflation System (ATIS), specifically designed for use on commercial long haul trailers underwent complete testing and evaluation in 1993/1994.1 Testing and evaluation included a field test of a prototype system and a controlled laboratory evaluation of the Rotary Union which is the only component subject to wear. The testing of the prototype system indicated that design improvements were necessary before the system could be installed in fleet operations. The design improvements were completed and field installation of production ATIS began. The design improvements were intended to improve overall system durability, decrease installation time, to have less effect on the axle structure than the original design, implement the use of SAE or DOT Approved pressure components and increase overall dependability of the system. ATIS systems have now been developed and tested for most domestic trailer axle configurations.
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Development and Validation of a Snowmobile Engine Emission Test Procedure

1998-09-14
982017
An appropriate test procedure, based on a duty cycle representative of real in-use operation, is an essential tool for characterizing engine emissions. A study has been performed to develop and validate a snowmobile engine test procedure for measurement of exhaust emissions. Real-time operating data collected from four instrumented snowmobiles were combined into a composite database for analysis and formulation of a snowmobile engine duty cycle. One snowmobile from each of four manufacturers (Arctic Cat, Polaris, Ski-Doo, and Yamaha) was included in the data collection process. Snowmobiles were driven over various on- and off-trail segments representing five driving styles: aggressive (trail), moderate (trail), double (trail with operator and one passenger), freestyle (off trail), and lake driving. Statistical analysis of this database was performed, and a five-mode steady-state snowmobile engine duty cycle was developed.
Technical Paper

Development of Benchmarking Methods for Electric Vehicle Drive Units

2024-04-09
2024-01-2270
As part of the U.S. Environmental Protection Agency’s (EPA’s) continuing assessment of advanced light-duty automotive technologies in support of regulatory and compliance programs, a development project was started to study various test methods to benchmark Electric Drive Units (EDUs) consisting of an electric motor, inverter and a speed-reduction gearset. Several test methods were identified for consideration, including both in-vehicle testing of the complete EDU and stand-alone testing of the EDU and its subcomponents after removal from the vehicle. In all test methods explored, sweeps of speed and torque test points were conducted while collecting key EDU data required to determine efficiency, including motor torque and speed, direct current (DC) battery voltage and current into the inverter, and three-phase alternating current (AC) phase voltages and currents out of the inverter and into the electric motor.
Technical Paper

Development of a Novel Dynamically Loaded Journal Bearing Test Rig

2021-09-21
2021-01-1218
In this work, a dynamically loaded hydrodynamic journal bearing test rig is developed and introduced. The rig is a novel design, using a hydraulic actuator with fast acting spool valves to apply load to a connecting rod. This force is transmitted through the connecting rod to the large end bearing which is mounted on a spinning shaft. The hydraulic actuator allows for fully variable control and can be used to apply either static load in compression or tension, or dynamic loading to simulate engine operation. A variable speed electric motor controls shaft speed and is synchronized to the hydraulic actuator to accurately simulate loading to represent all four engine strokes. A high precision torque meter enables direct measurements of friction torque, while shaft position is measured via a high precision encoder.
Technical Paper

Diesel Fuel Composition Effects on Ignition and Emissions

1993-10-01
932735
Four broad boiling range materials, representative of current and future feedstocks for diesel fuel, were processed to two levels of sulfur and aromatic content. These materials were then distilled into six to eight fractions each. The resulting 63 fuels were then characterized physically and chemically, and tested in both a constant volume combustion apparatus and a single cylinder diesel engine. The data obtained from these analyses and tests have been analyzed graphically and statistically. The results of the initial statistical analysis, reported here, indicate that the ignition quality of a fuel is dependent not only on the overall aromatic content, but also on the composition of the material formed during hydroprocessing of the aromatics. The NOx emissions, however, are related mainly to the aromatic content of the fuel, and the structure of the aromatic material.
Technical Paper

EPA HDEWG Program - Statistical Analysis

2000-06-19
2000-01-1859
The U.S. Environmental Protection Agency (EPA) formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee in 1995. The goal of the HDEWG was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). A three-phase program was developed. This paper presents the results of the statistical analysis of the data collected in the Phase II program. Included is a description of the design of the fuel test matrix, and a listing of the regression equations developed to predict emissions as a function of fuel density, cetane number, monoaromatics, and polyaromatics. Also included is a description of selected analyses of the emissions from a smaller set of fuel data that allowed direct comparison of the effects of natural and boosted cetane number.
Technical Paper

Effects of Cetane Number on Emissions From a Prototype 1998 Heavy-Duty Diesel Engine

1995-02-01
950251
As stringent emission regulations further constrain engine manufacturers by tightening both NOx and particulate emission limits, a knowledge of fuel effects becomes more important than ever. Among the fuel properties that affect heavy-duty diesel engine emissions, cetane number can be very important. Part of the CRC-APRAC VE-10 Project was developed to quantify the effects of cetane number on NOx and other emissions from a prototype 1998 Detroit Diesel Series 60. Three fuels with different natural cetane number (41, 45, 52) were treated with several levels and types of cetane improvers to study a range of cetane number from 40 to 60. Statistical analysis was used to define how regulated emissions from this prototype 1998 engine decreased with chemically-induced cetane number increase. Variation of HC, CO, NOx, and PM were modeled using a combination of a fuel's naturally-occurring cetane number and its total cetane number obtained with cetane improver.
X