Refine Your Search

Topic

Author

Search Results

Technical Paper

A Testbed for the Mars Returned Sample Handling Facility

2001-07-09
2001-01-2412
Samples of Mars surface material will return to Earth in 2014. Prior to curation and distribution to the scientific community the returned samples will be isolated in a special facility until their biological safety has been assessed following protocols established by NASA’s Planetary Protection Office. The primary requirements for the pre-release handling of the Martian samples include protecting the samples from the Earth and protecting the Earth from the sample. A testbed will be established to support the design of such a facility and to test the planetary protection protocols. One design option that is being compared to the conventional Biological Safety Level 4 facility is a double walled differential pressure chamber with airlocks and automated equipment for analyzing samples and transferring them from one instrument to another.
Technical Paper

Airport Remote Tower Sensor Systems

2001-09-11
2001-01-2651
Remote Tower Sensor Systems are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA and NOAA. RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to real-time airport conditions and aircraft status.
Journal Article

Autonomy and Intelligent Technologies for Advanced Inspection Systems

2013-09-17
2013-01-2092
This paper features a set of advanced technologies for autonomy and intelligence in advanced inspection systems of facility operations. These technologies offer a significant contribution to set a path to establish a system and an operating environment with autonomy and intelligence for inspection, monitoring and safety via gas and ambient sensors, video mining and speech recognition commands on unmanned ground vehicles and other platforms to support operational activities in the Cryogenics Test bed and other facilities and vehicles. These advanced technologies are in current development and progress and their functions and operations require guidance and formulation in conjunction with the development team(s) toward the system architecture.
Technical Paper

Carbon Production in Space from Pyrolysis of Solid Waste

2006-07-17
2006-01-2183
Pyrolysis processing of solid waste in space will inevitably lead to carbon formation as a primary pyrolysis product. The amount of carbon depends on the composition of the starting materials and the pyrolysis conditions (temperature, heating rate, residence time, pressure). Many paper and plastic materials produce almost no carbon residue upon pyrolysis, while most plant biomass materials or human wastes will yield up to 20-40 weight percent on a dry, as-received basis. In cases where carbon production is significant, it can be stored for later use to produce CO2 for plant growth. Alternatively it can be partly gasified by an oxidizing gas (e.g., CO2, H2O, O2) in order to produce activated carbon. Activated carbons have a unique capability of strongly absorbing a great variety of species, ranging from SO2 and NOx, trace organics, mercury, and other heavy metals.
Technical Paper

Detailed Experimental Results of Drag-Reduction Concepts on a Generic Tractor-Trailer

2005-11-01
2005-01-3525
The 1/8-scale Generic Conventional Model was studied experimentally in two wind tunnels at NASA Ames Research Center. The investigation was conducted at a Mach number of 0.15 over a Reynolds number range from 1 to 6 million. The experimental measurements included total and component forces and moments, surface pressures, and 3-D particle image velocimetry. Two configurations (trailer base flaps and skirts) were compared to a baseline representative of a modern tractor aero package. Details of each configuration provide insight into the complex flow field and the resulting drag reduction was found to be sensitive to Reynolds number.
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

1994-06-01
941283
The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on November 1, 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHFs) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An Inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR).
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Direct-Interface Fusible Heat Sink Performance Tests

1994-06-01
941384
A high fidelity, direct-interface, fusible heat sink for cooling astronauts during extravehicular activity was constructed and tested. The design includes special connectors that allow the coolant loop to be directly connected to the fusible material, in this case water. Aspects tested were start-up characteristics, cooling rate, and performance during simulated heat loads. A simplified math model was used to predict the effect of increasing the effective thermal conductivity on heat sink freezing rate. An experiment was designed to measure the effective thermal conductivity of a water/Aluminum foam system, and full gravity tests were conducted to compare the freezing rates of water and water/foam systems. This paper discusses the results of these efforts.
Technical Paper

Engineering a Visual System for Seeing Through Fog

1992-07-01
921130
We examine the requirements for on-board aircraft sensor systems that would allow pilots to “see through” poor weather, especially fog, and land and rollout aircraft under conditions that currently cause flight cancellations and airport closures. Three visual aspects of landing and rollout are distinguished: guidance, hazard detection and hazard recognition. The visual features which support the tasks are discussed. Three broad categories of sensor technology are examined: passive millimeter wave (PMMW), imaging radar, and passive infrared (IR). PMMW and imaging radar exhibit good weather penetration, but poor spatial and temporal resolution. Imaging radar exhibits good weather penetration, but typically relies on a flat-earth assumption which can lead to interpretive errors. PMMW systems have a narrow field of view. IR has poorer weather penetration but good spatial resolution.
Technical Paper

Force and Moment Measurements with Pressure-Sensitive Paint

1999-10-19
1999-01-5601
The desire to provide integrated surface pressures for aerodynamic loads measurements has been a driving force behind the development of pressure-sensitive paint (PSP). To demonstrate the suitability of PSP for this purpose, it is not sufficient to simply show that PSP is accurate as compared to pressure taps. PSP errors due to misregistration or temperature sensitivity may be high near model edges, where pressure taps are rarely installed. Thus, PSP results will appear good compared to the taps, but will yield inaccurate results when integrated. A more stringent technique is to compare integrated PSP data over the entire model surface with balance and/or CFD results. This paper describes a simple integration method for PSP data and presents comparisons of balance and PSP results for three experiments. PSP is shown quite accurate for normal force measurements, but less effective at determining axial force and moments.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Machine Learning for Detecting and Locating Damage in a Rotating Gear

2005-10-03
2005-01-3371
This paper describes a multi-disciplinary damage detection methodology that can aid in detecting and diagnosing a damage in a given structural system, not limited to the example of a rotating gear presented here. Damage detection is performed on the gear stress data corresponding to the steady state conditions. The normal and damage data are generated by a finite-difference solution of elastodynamic equations of velocity and stress in generalized coordinates1. The elastodynamic solution provides a knowledge of the stress distribution over the gear such as locations of stress extrema, which in turn can lead to an optimal placement of appropriate sensors over the gear to detect a potential damage. The damage detection is performed by a multi-function optimization that incorporates Tikhonov kernel regularization reinforced by an added Laplacian regularization term as used in semi-supervised machine learning. Damage is mimicked by reducing the rigidity of one of the gear teeth.
Technical Paper

Microgravity Root Zone Hydration Systems

2000-07-10
2000-01-2510
Accurate root zone moisture control in microgravity plant growth systems is problematic. With gravity, excess water drains along a vertical gradient, and water recovery is easily accomplished. In microgravity, the distribution of water is less predictable and can easily lead to flooding, as well as anoxia. Microgravity water delivery systems range from solidified agar, water-saturated foams, soils and hydroponics soil surrogates including matrix-free porous tube delivery systems. Surface tension and wetting along the root substrate provides the means for adequate and uniform water distribution. Reliable active soil moisture sensors for an automated microgravity water delivery system currently do not exist. Surrogate parameters such as water delivery pressure have been less successful.
Technical Paper

Navigation in a Challenging Martian Environment Using Data Mining Techniques

2005-10-03
2005-01-3383
This paper discussed how data mining techniques could give advantage to the robot in navigation, in terms of speed. The input of our navigation system is the sensory information collected by the robot's equipped landmark sensor and infra-red sensor, the process of the system is the proposed data mining technique, and the output of the system is the execution of the moving direction in a 2D Martian environment. The results demonstrate efficient goal-oriented navigation using data mining techniques.
Technical Paper

Performance Characterization of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Based on Integrated Tests with Carbon Dioxide Removal and Reduction Assemblies

2006-07-17
2006-01-2126
CO2 removal, recovery and reduction are essential processes for a closed loop air revitalization system in a crewed spacecraft. Typically, a compressor is required to recover the low pressure CO2 that is being removed from the spacecraft in a swing bed adsorption system. This paper describes integrated tests of a Temperature-Swing Adsorption Compressor (TSAC) with high-fidelity systems for carbon dioxide removal and reduction assemblies (CDRA and Sabatier reactor). It also provides details of the TSAC operation at various CO2 loadings. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver it at a higher pressure. TSAC utilizes the principle of temperature-swing adsorption compression and has no rapidly moving parts.
Technical Paper

Plant Growth and Ecosystem Development on a Terraformed Mars: With the Use of the International Space Station to Investigate Plant Growth in Martian Gravity

1999-07-12
1999-01-2206
A fundamental question for Astrobiology is the question of the ability of life to expand beyond its planet of origin. Introducing life on Mars is the likely near-term step in addressing this question. Making Mars more suitable for life (terraforming) involves altering the martian environment so that microorganisms and plants from Earth could survive there. We define two principal goals: 1) determine the minimal change in pressure, gas composition, and temperature on Mars that would allow for growth of plants from arctic and alpine biomes. 2) Determine the characteristics of plant growth at 0.38 g. This paper reviews martian environmental factors in the context of plant survival, and discusses the use of Space Station as a hypogravity testbed.
Technical Paper

Plant Growth and Plant Environmental Monitoring Equipment on the Mir Space Station: Experience and Data from the Greenhouse II Experiment

1996-07-01
961364
A three country effort (U.S., Russia, and Bulgaria) has upgraded the plant growth facilities on the Mir Space Station and used the new facility to grow wheat for 90 days. The Svet plant-growth facility was reactivated and used in an initial experiment as part of the Shuttle/Mir program, August to November, 1995. The Svet system, used first to grow cabbage and radish during a 1990 experiment, was augmented by the addition of a U.S. developed Gas Exchange Measurement System (GEMS) that measures a range of environmental parameters plus transpiration, photosynthesis, and possibly respiration. Environmental parameters include cabin, chamber, root-zones, and leaf temperatures. Light levels, relative humidity, oxygen, and atmospheric pressure are also measured. High-accuracy water-vapor and carbon-dioxide concentrations and differences are measured using specially developed IRGA systems.
Technical Paper

Pressure-Sensitive Paint Technology Applied to Low-Speed Automotive Testing

2001-03-05
2001-01-0626
Pressure-sensitive paint (PSP) technology is a technique used to experimentally determine surface pressures on models during wind tunnel tests. The key to this technique is a specially formulated pressure-sensitive paint that responds to, and can be correlated with the local air pressure. Wind tunnel models coated with pressure-sensitive paint are able to yield quantitative pressure data on an entire model surface in the form of light intensity values in recorded images. Quantitative results in terms of pressure coefficients (Cp) are obtained by correlating PSP data with conventional pressure tap data. Only a small number of surface taps are needed to be able to obtain quantitative pressure data with the PSP method. This technique is gaining acceptance so that future automotive wind tunnel tests can be done at reduced cost by eliminating most of the expensive pressure taps from wind tunnel models.
Technical Paper

Propulsion System Sizing For Powered Lift And Mechanical Flap Quiet Aircraft

1974-02-01
740455
Propulsion system sizing for mechanical flap and externally blown flap aircraft is demonstrated. Included in this study is the effect of various levels of noise suppression on the aircraft final design characteristics. Both aircraft are sized to operate from a 3000 ft runway and perform the same mission. For each aircraft concept, propulsion system sizing is demonstrated for two different engine cycles-one having a fan pressure ratio of 1.5 and a bypass ratio of 9 and the other having a fan pressure ratio of 1.25 and a bypass ratio of 17.8. The results presented include the required thrust to weight ratio, wing loading, resulting gross weight and direct operating costs as functions of the engine noise level for each combination of engine cycle and aircraft concept.
X