Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Customer Driven Reliability and Quality Methodology for Existing Products

1989-02-01
890811
In order to maximize customer satisfaction in today's global market place, the quality of products and services need to be improved continually. Increased focus on quality, with the attendant proliferation of methods and tools, has created the need for a comprehensive framework to guide the selection of the tools. Individuals within an organization need to know what tools are appropriate in a given situation, and when, where and how the knowledge gained from an effort should be documented. In addition, a common nomenclature to convey quality related information to each other would avoid confusion and improve the communication process thus improving the effectiveness and productivity of the organization. This paper integrates tools that have evolved recently with the old tools that have been in use for a number of years.
Technical Paper

A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

1999-07-12
1999-01-2175
Ames Research Center’s Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A Functional View of Engineering

1999-09-28
1999-01-3218
Many descriptions of product development are based on a timeline of activity. Timelines typically do not characterize the underlying strategy and flexibility embodied in the technical activity that actually takes place between activity nodes. Timelines alone will inhibit evolving to a more rational approach to product development. The view of engineering described in this paper is a functional view of engineering. It is what engineers do. It is aligned with the technical tools used by engineers. It applies to both product development and manufacturing. It's purpose is to enhance understanding of the function of engineering activities, including reliability.
Technical Paper

A Matrix Array Technique for Evaluation of Adhesively Bonded Joints

2012-04-16
2012-01-0475
Adhesive bonding technology is playing an increasingly important role in automotive industry. Ultrasonic evaluation of adhesive joints of metal sheets is a challenging problem in Non-Destructive Testing due to the large acoustic impedance mismatch between metal and adhesive, variability in the thickness of metal and adhesive layers, as well as variability in joint geometry. In this paper, we present the results from a matrix array of small flat ultrasonic transducers for evaluation of adhesively bonded joints in both laboratory and production environments. The reverberating waveforms recorded by the array elements are processed to obtain an informative parameter, whose two-dimensional distribution can be presented as a C-scan. Energy of the reflected waveform, normalized with respect to the energy obtained from an area with no adhesive, is a robust parameter for discriminating "adhesive/no-adhesive" regions.
Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

1999-03-01
1999-01-0556
A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
Technical Paper

A NVH CAE approach performed on a vehicle closures pumping issue

2018-09-03
2018-36-0287
The use of finite element modeling (FEM) tools is part of the most of the current product development projects of the automotive industry companies, replacing an important part of the physical tests with lower costs, higher speed and with increasing accuracy by each day. In addition to this, computer-aided engineering (CAE) tools can be either used after the product is released, at any moment of the product life, in many different situation as a new feature release, to validate a more cost-efficient design proposal or to help on solving some manufacturing problem or even a vehicular field issue. Different from the phase where the product is still under development, when standard virtual test procedures are performed in order to validate the vehicle project, in this case, where engineers expertise plays a very important role, before to proceed with any standard test it is fundamental to understand the physics of the phenomena that is causing the unexpected behavior.
Technical Paper

A New Analysis Method for Accurate Accounting of IC Engine Pumping Work and Indicated Work

2004-03-08
2004-01-1262
In order to improve fuel economy, engine manufacturers are investigating various technologies that reduce pumping work in spark ignition engines. Current cylinder pressure analysis methods do not allow valid comparison of pumping work reduction strategies. Existing methods neglect valve timing effects which occur during the expansion and compression strokes, but are actually part of the gas exchange process. These additional pumping work contributions become more significant when evaluating non-standard valve timing concepts. This paper outlines a new analysis method for calculating the pumping work and indicated work of a 4-stroke internal combustion engine. Corrections to PMEP and IMEP are introduced which allow the valid comparison of pumping work and indicated efficiency between engines with different pumping work reduction strategies.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

2007-05-15
2007-01-2335
The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

A Plastic Appliqué's Strain Field Determination by Experimental Shearographic Analyses Under an Applied Thermal Load

2005-05-10
2005-01-2066
The objective of this paper is to develop a test capable of ranking lift-gates based on strain concentration levels reflected in fringe characteristics in the known stress/strain concentration and fracture vicinity. First, the system (lift gate glass, adhesive and appliqué) is chosen as test sample since the subsystem (local appliqué) does not exhibit the failure mode observed in the field test. Subsequently, it has been identified that the thermal component (rather than mechanical) is the predominant load by laser scanning vibrometry and confirmed via field test data. Next, digital shearography has been selected as the measurement and visualization tool of strain distribution due to its various advantages such as full field view and non-contact advantages. Finally, the test method has been applied to rank and optimize the structural configuration around appliqués' to reduce / eliminate failure.
Technical Paper

A Testbed for the Mars Returned Sample Handling Facility

2001-07-09
2001-01-2412
Samples of Mars surface material will return to Earth in 2014. Prior to curation and distribution to the scientific community the returned samples will be isolated in a special facility until their biological safety has been assessed following protocols established by NASA’s Planetary Protection Office. The primary requirements for the pre-release handling of the Martian samples include protecting the samples from the Earth and protecting the Earth from the sample. A testbed will be established to support the design of such a facility and to test the planetary protection protocols. One design option that is being compared to the conventional Biological Safety Level 4 facility is a double walled differential pressure chamber with airlocks and automated equipment for analyzing samples and transferring them from one instrument to another.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
Technical Paper

A/C Moan - its Diagnostics and Control

2009-05-19
2009-01-2054
Air-conditioning (A/C) induced moan is a very commonly observed phenomenon in automotive refrigerant systems. Since most of the automotive A/C systems cycle ON/OFF four to six times every minute, the A/C induced moan is quite readily audible under engine idle and even while driving, especially under lower engine/vehicle speeds. It is not unusual for an A/C compressor to moan or not, on some vehicle/s under certain operating conditions. Most of the OEMs resolve or suppress the A/C moan potential to barely audible levels. However, under some unique and extreme operating conditions, A/C moan is quite readily induced and often results in customer complaints. This paper discusses A/C moan related root-causes, sources and paths of propagation. A systematic diagnostic test-procedure is also described to diagnose and develop the needed most cost-effective design-fixes. Finally, based on this case-study - some objective targets are recommended to suppress the A/C moan to acceptable levels.
Technical Paper

Acquisition of Transient Tire Force and Moment Data for Dynamic Vehicle Handling Simulations

1983-11-07
831790
This paper describes the issues encountered in using conventionally acquired tire test data for dynamic total vehicle handling simulations and the need for improved methodology. It describes the new test procedure that was used to acquire all three forces and three moments in a transient mode for a matrix of loads, slip and camber angles. A study of the test data supports the premises that the overturning moment, Mx, should not be neglected in dynamic simulations, and that the effects of camber should not be treated as only an independent, linearly additive, camber thrust. Instead of the conventional application of a bi-cubic regression fit to a six region data division, a new algorithm is applied. The data is divided differently into five regions in the α - Fz plane, and a variable format regression equation is applied as appropriate. The resulting regression coefficients matrix is readily usable in dynamic simulations, and is shown to have a superior curve fit to the test data.
X