Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

3D Re-Engineering: A Comprehensive Process for Solving Production Assembly Fit Problems

1998-06-02
981835
Dimensional Management (DM) is a methodology to predict and control the impact of variation on assembly from, fit, and function. Application of Dimensional Management tools and other modeling and simulation techniques are combined in a process called 3D Re-Engineering for application to existing production designs. Analytical techniques for predicting the impact of variation on assembly fit, and corresponding methods for controlling variation are presented, as used in a production environment for root cause corrective action on existing assembly fit problems. Assembly variation analysis is typically performed early in the product development phases, by coordinating datums, assembly sequences, assembly methods, and detail part tolerances across the product development team.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

A Comparison of Pressure Sensitive Paint (PSP) Techniques for Aerodynamic Testing at Slow Velocities

2002-03-04
2002-01-0255
Pressure Sensitive Paint (PSP) has been used for several years by the aircraft industry in transonic wind tunnel testing where the oxygen concentrations are low and the luminescence of the paint is easily recorded. Extending PSP to slower speeds where the oxygen concentrations are closer to atmospheric conditions is much more challenging. For the past few years, work has been underway at both Wright Patterson Air Force Base and Ford Motor Company to advance PSP techniques for testing at slower speeds. The CRADA (Cooperative Research and Development Agreement) provided a way for comparisons to be made of the different PSP systems that were being investigated. This paper will report on PSP tests conducted as part of the CRADA.
Technical Paper

A Faster “Transition” to Laminar Flow

1985-11-01
851855
A discussion is given of the ongoing research related to laminar flow airfoils, nacelles, and wings where the laminar flow is maintained by a favorable pressure gradient, surface suction or a combination of the two. Design methologies for natural laminar flow airfoil sections and wings for both low and high speed applications are outlined. Tests of a 7-foot chord, 23° sweep laminar-flow-control-airfoil at high subsonic Mach numbers are described along with the associated stability theory used to design the suction system. The state-of-the-art of stability theory is simply stated and a typical calculation illustrated. In addition recent computer simulations of transition using the time dependent Navier-Stokes (N-S) equations are briefly described. Advances in wind tunnel capabilities and instrumentation will be reviewed followed by the presentation of a few results from both wind tunnels and flight. Finally, some suggestions for future work will complete the paper.
Journal Article

A Fresh Look at Radiation Exposures from Major Solar Proton Events

2008-06-29
2008-01-2164
Solar proton events (SPEs) represent the single-most significant source of acute radiation exposure during space missions. Historically, an exponential in rigidity (particle momentum) fit has been used to express the SPE energy spectrum using GOES data up to 100 MeV. More recently, researchers have found that a Weibull fit better represents the energy spectrum up to 1000 MeV (1 GeV). In addition, the availability of SPE data extending up to several GeV has been incorporated in analyses to obtain a more complete and accurate energy spectrum representation. In this paper we discuss the major SPEs that have occurred over the past five solar cycles (~50+ years) in detail - in particular, Aug 1972 and Sept & Oct 1989 SPEs. Using a high-energy particle transport/dose code, radiation exposure estimates are presented for various thicknesses of aluminum. The effects on humans and spacecraft systems are also discussed in detail.
Technical Paper

A Hypersonic Cruiser Concept for the 21st Century

1998-09-28
985525
This paper describes a hypersonic cruiser concept for the 21st century. It is based on studies conducted by The Boeing Company and the National Aeronautics and Space Administration (NASA - Langley) to assess the capability of a hypersonic vehicle concept to conduct cruise and/or space launch missions. It details a Mach 10 cruise vehicle from NASA's Dual-Fuel Airbreathing Hypersonic Vehicle Design study (1995/96), and a Mach 10 cruise/space access vehicle, which resulted from follow-on work. Vehicle performance is presented showing that the Mach 10 cruise vehicle can operate over a significant mission radius, and that the Mach 10 cruise/space access configuration can accomplish desired space launch and cruise missions. A rocket based combined cycle (RBCC) variant is also introduced showing favorable cruise and space launch capability. NASA's Hyper-X flight experiment, which is the next step towards achieving this vision, is also described.
Technical Paper

A MACH 6 External Nozzle Experiment with Argon-Freon Exhaust Simulation

1989-09-01
892315
A scramjet exhaust simulation technique for hypersonic wind tunnel testing has been developed. Mixtures of Argon and Freon correctly match the inviscid simulation parameters of Mach number, static-pressure ratio, and the ratio of specific heats at the combustor exit location; this simulation is accomplished at significantly reduced temperatures and without combustion. An investigation of nozzle parametrics in a Mach 6 freestream showed that the external nozzle ramp angle, the cowl trailing-edge angle, an external nozzle flow fence and the nozzle static-pressure ratio significantly affected the external nozzle thrust and pitching moment as measured by the integration of surface-pressure data. A comparison of Argon-Freon and air exhaust simulation showed that the external nozzle thrust and pitching moment were in error by roughly a factor of 2 using air due to the incorrect match of the ratio of specific heats.
Technical Paper

A New Method for Calculating Low Energy Neutron Flux

2006-07-17
2006-01-2149
A new method is developed for calculating the low energy neutron flux in a space environment which is protected from galactic cosmic rays (GCR) and solar particle events (SPE) by shielding materials. Our calculations are compared with low energy neutron flux flight data recorded on four different STS low earth orbit missions. We also compare our neutron flux calculations with the low energy neutron flux data recorded by MIR. The low energy neutron flux calculations can be described as a deterministic method for solving the Boltzmann equation for the light ion flux associated with a given environment. Existing Monte Carlo neutron flux simulations associated with the MIR and ISS space stations are also compared with our deterministic method for calculating neutron flux.
Technical Paper

A Novel Repair Technique for the Internal Thermal Control System Dual-Membrane Gas Trap

2005-07-11
2005-01-3079
A dual-membrane gas trap is currently used to remove gas bubbles from the Internal Thermal Control System (ITCS) coolant on board the International Space Station (ISS). The gas trap consists of concentric tube membrane pairs, comprised of outer hydrophilic tubes and inner hydrophobic fibers. Liquid coolant passes through the outer hydrophilic membrane, which traps the gas bubbles. The inner hydrophobic fiber allows the trapped gas bubbles to pass through and vent to the ambient atmosphere in the cabin. The gas trap was designed to last for the entire lifetime of the ISS, and therefore was not designed to be repaired. However, repair of these gas traps is now a necessity due to contamination from the on-orbit ITCS fluid and other sources on the ground as well as a limited supply of flight gas traps. This paper describes a novel repair technique that has been developed that will allow the refurbishment of contaminated gas traps and their return to flight use.
Journal Article

A Psychoacoustic Test for Urban Air Mobility Vehicle Sound Quality

2023-05-08
2023-01-1107
This paper describes a psychoacoustic test in the Exterior Effects Room (EER) at the NASA Langley Research Center. The test investigated the degree to which sound quality metrics (sharpness, tonality, etc.) are predictive of annoyance to notional sounds of Urban Air Mobility (UAM) vehicles (e.g., air taxis). A suite of 136 unique (4.6 second duration) UAM rotor noise stimuli was generated. These stimuli were based on aeroacoustic predictions of a NASA reference UAM quadrotor aircraft under two flight conditions. The synthesizer changed rotor noise parameters such as the blade passage frequency, the relative level of broadband self-noise, and the relative level of tonal motor noise. With loudness constant, the synthesis parameters impacted sound quality in a way that created a spread of predictors both in synthesizer parameters and in sound quality metrics.
Technical Paper

A Reduced-Order Enclosure Radiation Modeling Technique for Aircraft Actuators

2010-11-02
2010-01-1741
Modern aircraft are aerodynamically designed at the edge of flight stability and therefore require high-response-rate flight control surfaces to maintain flight safety. In addition, to minimize weight and eliminate aircraft thermal cooling requirements, the actuator systems have increased power-density and utilize high-temperature components. This coupled with the wide operating temperature regimes experienced over a mission profile may result in detrimental performance of the actuator systems. Understanding the performance capabilities and power draw requirements as a function of temperature is essential in properly sizing and optimizing an aircraft platform. Under the Air Force Research Laboratory's (AFRL's) Integrated Vehicle and Energy Technology (INVENT) Program, detailed models of high performance electromechanical actuators (HPEAS) were developed and include temperature dependent effects in the electrical and mechanical actuator components.
Technical Paper

A Robust Method of Countersink Inspection Using Machine Vision

2004-09-21
2004-01-2820
An automated system drills the outer moldline holes on a military aircraft wing. Currently, the operator manually checks countersink diameter every ten holes as a process quality check. The manual method of countersink inspection (using a countersink gauge with a dial readout) is prone to errors both in measurement and transcription, and is time consuming since the operator must stop the automated equipment before measuring the hole. Machine vision provides a fast, non-contact method for measuring countersink diameter, however, data from machine vision systems is frequently corrupted by non-gaussian noise which causes traditional model fitting methods, such as least squares, to fail miserably. We present a solution for circle measurement using a statistically robust fitting technique that does an exceptional job of identifying the countersink even in the presence of large amounts of structured and non-structured noise such as tear-out, scratches, surface defects, salt-and-pepper, etc.
Technical Paper

A Simplified Orbit Analysis Program for Spacecraft Thermal Design

1997-07-01
972540
This paper presents a simplified orbit analysis program developed to calculate orbital parameters for the thermal analysis of spacecraft and space-flight instruments. The program calculates orbit data for inclined and sunsynchronous earth orbits. Traditional orbit analyses require extensive knowledge of orbital mechanics to produce a simplified set of data for thermal engineers. This program was created to perform orbital analyses with minimal input and provides the necessary output for thermal analysis codes. Engineers will find the program to be a valuable analysis tool for fast and simple orbit calculations. A description of the program inputs and outputs is included. An overview of orbital mechanics for inclined and Sun-synchronous orbits is also presented. Finally, several sample cases are presented to illustrate the thermal analysis applications of the program.
Technical Paper

A Simulation Evaluation of VFR Heliport Operations in an Obstacle-Rich Environment

1997-10-13
975532
A study was conducted to investigate the impacts of obstacles on pilot performance, workload, and perceptions of safety in a visual flight rule (VFR) obstacle-rich environment (ORE). The study was conducted using a piloted simulation of a single-rotor, multi-engine helicopter operating in a highly detailed urban visual scene database. The database contained multiple obstacle types, with variable obstacle heights and densities. Nine pilots completed the approaches and departures into and out of a heliport located in the center of the generic urban environment. Two flight routes offered unique presentations of terrain and obstacle types. Obstacle height/density and time of day/lighting parameters were systematically manipulated. A multi-dimensional data collection methodology employing the simultaneous collection of direct aircraft state, pilot performance data, pilot physiological data and pilot subjective responses was employed.
Technical Paper

A Summary of Reynolds Number Effects on Some Recent Tests in the Langley 0.3-Meter Transonic Cryogenic Tunnel

1986-10-01
861765
Reynolds number effects noted from selected test programs conducted in the Langiey 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT) are discussed. The tests, which cover a unit Reynolds number range from about 2.0 to 80.0 million per foot, summarize effects of Reynolds number on: 1) aerodynamic data from a supercritical airfoil, 2) results from several wall interference correction techniques, and 3) results obtained from advanced, cryogenic test techniques. The test techniques include 1) use of a cryogenic sidewall boundary layer removal system, 2) detailed pressure and hot wire measurements to determine test section flow quality, and 3) use of a new hot film system suitable for transition detection in a cryogenic wind tunnel. The results indicate that Reynolds number effects appear most significant when boundary layer transition effects are present and at high lift conditions when boundary layer separation exists on both the model and the tunnel sidewall.
Technical Paper

A Summary of the Effects of Reynolds Number on Drag Divergence for Airfoils Tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel

1986-10-01
861767
The direct first order effect of Reynolds number on the determination of drag-divergence conditions is summarized for six airfoils which were tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. A second order effect, derived through the effect of Reynolds number on the sidewall boundary layer, is included. In addition, a comparison of how the drag-divergence condition is affected on going from one class of airfoil to another is presented. The drag-divergence condition is affected first order by Reynolds number for each of the six airfoils and of course all data are affected second order, since the presence of the boundary layer necessitates a sidewall correction.
Technical Paper

APPLICATIONS OF ADVANCED AERODYNAMIC TECHNOLOGY TO LIGHT AIRCRAFT

1973-02-01
730318
This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. The objective was to obtain increased cruise performance and improved ride quality while maintaining the take-off and landing speeds of the unmodified airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The expanded project is a joint effort involving the University of Kansas, Piper Aircraft Company, Robertson Aircraft Company, and Wichita State University. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers.
Technical Paper

Adsorption and Desorption Effects on Carbon Brake Material Friction and Wear Characteristics

2005-10-03
2005-01-3436
The characteristics of the friction materials used in aircraft brakes are extremely important to the performance and safe operation of transport airplanes. These characteristics can change during exposure to environmental effects in the duty cycle, which can lead to problems, such as abnormally low friction, or brake induced vibration. Water vapor in the atmosphere produces a direct lubricant effect on carbon. Observed transition temperatures within the range of 140°C to 200°C, associated with increases in friction and wear of carbon brake materials, are attributed to water vapor desorption. Friction and wear transitions in the range of 500°C to 900°C may be associated with oxygen desorption.
Technical Paper

Advanced Analysis Methods and Nondestructive Inspection Technology Under Development in the NASA Airframe Structural Integrity Program

1994-03-01
941247
An advanced analytical methodology has been developed for predicting the residual strength of stiffened thin-sheet riveted shell structures such as those used for the fuselage of a commercial transport aircraft. The crack-tip opening angle elastic-plastic fracture criterion has been coupled to a geometric and material nonlinear finite element shell code for analyzing complex structural behavior. An automated adaptive mesh refinement capability together with global-local analysis methods have been developed to predict the behavior of fuselage structure with long cracks. This methodology is currently being experimentally verified. Advanced nondestructive inspection technology has been developed that will provide airline operators with the capability to conduct reliable and economical broad-area inspections of aircraft structures.
Technical Paper

Advanced Data Format (ADF): A Portable Hierarchical Database

1998-09-28
985565
Advanced Data Format (ADF) is a portable hierarchical database software library developed by The Boeing Company under contract with NASA [1] and with assistance from industry partners. ADF was designed and built to directly support the CFD General Notation System (CGNS1) project. The CGNS project defines conventions and supplies software to facilitate the exchange of computational fluid dynamics (CFD) data between sites and between applications, and it allows stable archiving of CFD data. CGNS is implemented on the ADF foundation and is focused on the needs of the CFD community. This paper details the design, implementation, use, and future direction of ADF.
X