Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

A Review of Motor Vehicle Glazing-Related Ejection Injuries

1993-03-01
930740
A review was conducted of injuries associated with ejection through motor vehicle glazing, using the 1988 through 1991 National Accident Sampling System data maintained by the National Highway Traffic Safety Administration. The review indicated that one percent of the occupants in towaway crashes were ejected and that 22 percent of fatalities in towaway crashes were ejected. Fifty-three percent of complete ejections were through the glazing openings in motor vehicles. Current motor vehicle glazing does not contribute significantly to occupant injuries, but the effects of glazing changes on serious injuries will need to be considered.
Technical Paper

Accelerometers Equivalency in Dummy Crash Testing

1996-02-01
960454
The National Highway Traffic Safety Administration has initiated research to develop performance specifications for dummy-based accelerometers in the crash test environment, and to provide criteria for defining and establishing equivalent performance among accelerometers from different manufacturers. These research efforts are within the general guidelines on transducer equivalency outlined in the current revision of the Society of Automotive Engineers recommended practice, Instrumentation for Impact Test, SAE 211/2 March 1995. Representative data from vehicle crash and component level tests have been analyzed to determine the acceleration levels and frequency content in a realistic dynamic environment for dummy-based accelerometers.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Comparison of Pedestrian Kinematics and Injuries in Staged Impact Tests with Cadavers and Mathematical 2D Simulations

1983-02-01
830186
The paper presents a comparison of kinematic responses between the MVMA-2D and the MAC-DAN pedestrian models and pedestrian cadaver kinematics observed in staged car/pedestrian impact tests. The paper also discusses the injuries experienced in the cadaver tests. Seven cadaver specimens in the standing posture were impacted at 25 mph by two different cars: one having a steel bumper and the other having a plastic bumper. The MVMA-2D and MAC-DAN mathematical pedestrian models were employed to simulate pedestrian impacts at 25 mph by a vehicle with a stylized geometry that is similar to the vehicles used in cadaver tests. Comparison of the simulations and the cadaver tests show that both models require further refinement to be able to more accurately simulate the kinematics of the lower legs during impacts with the vehicle bumper.
Technical Paper

Computational Analysis of Head Impact Response Under Car Crash Loadings

1995-11-01
952718
Computational simulations are conducted for several head impact scenarios using a three dimensional finite element model of the human brain in conjunction with accelerometer data taken from crash test data. Accelerometer data from a 3-2-2-2 nine accelerometer array, located in the test dummy headpart, is processed to extract both rotational and translational velocity components at the headpart center of gravity with respect to inertial coordinates. The resulting generalized six degree-of-freedom description of headpart kinematics includes effects of all head impacts with the interior structure, and is used to characterize the momentum field and inertial loads which would be experienced by soft brain tissue under impact conditions. These kinematic descriptions are then applied to a finite element model of the brain to replicate dynamic loading for actual crash test conditions, and responses pertinent to brain injury are analyzed.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

Light Vehicle Frontal Impact Protection

1982-02-01
820243
This paper addresses the protection of occupants in light vehicles. It presents data and techniques for identifying and measuring potential crashworthiness improvements that would mitigate injuries to occupants striking frontal interior components such as the steering wheel, instrument panel and windshield. Both restrained and unrestrained occupants can be injured by frontal interior components in crashes. The focus of this paper is on the unrestrained occupant. However, performance criteria and associated countermeasures will have to be developed considering the differences in the mechanisms of injury to both the restrained and unrestrained occupants. Work on the restrained occupant and the similarities and differences between both conditions remains to be considered. The paper presents information on the magnitude and types of injuries received from frontal interior components and on how the performance of these components and the vehicle structure affect the resultant injuries.
Technical Paper

Light Vehicle Occupant Protection - Top and Rear Structures and Interiors

1982-02-01
820244
This paper addresses serious, occupant crash injuries from: (a) head impacts with A-pillars, roof headers, and roof side rails, and (b) occupant entrapment and roof intrusion in rollover accidents. It also discusses two less frequent causes of injury: (a) fires in crashes, and (b) occupant ejection through the roof and rear window or rear doors. The paper estimates the relative frequencies of these types of injuries, classified according to the body area injured and the vehicle interior component responsible for the injury. Data for these estimates is from the National Crash Severity Study augmented by the 1979 Fatal Accident Reporting System data. Also, this paper addresses the potential for reducing the severity of these injuries in light motor vehicles, with particular emphasis on AIS 3 and more serious injuries.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Pedestrian Injuries and the Downsizing of Cars

1983-02-01
830050
The Pedestrian Injury Causation Study (PICS) is used to investigate the relations between car weight and pedestrian injuries in frontal accidents. As car curb weight decreased, large changes in overall severity are not observed, although the proportion of head injuries increases. Since contacts of the windshield area are more common in smaller cars, they are studied in detail.
Technical Paper

Response of the Eurosid-1 Thorax to Lateral Impact

1999-03-01
1999-01-0709
The Eurosid-1 dummy was subjected to a series of lateral and oblique pendulum impacts to study the anomalous “flat-top” thorax deflection versus time-histories observed in full-scale vehicle tests. The standard Eurosid-1, as well as two different modified versions of the dummy, were impacted at 6 different angles from -15 to +20 degrees (0 degrees is pure lateral) in the horizontal plane. The flat-top deflections were observed in the tests with the standard Eurosid-1, while one of the modified versions reduced the flat-top considerably. Full scale vehicle tests with the standard and modified Eurosid-1 suggest similar reductions. A second series of tests was conducted on the modified Eurosid-1 to investigate the effect of door surface friction on the shoulder rotation and the chest deflection. The data suggested that increasing the friction on the door surface impeded shoulder rotation and ultimately reduced the chest deflection in the Eurosid-1.
Technical Paper

Reverse Engineering Method for Developing Passenger Vehicle Finite Element Models

1999-03-01
1999-01-0083
A methodology to develop full-vehicle representation in the form of a finite element model for crashworthiness studies has been evolved. Detailed finite element models of two passenger vehicles - 1995 Chevy Lumina and 1994 Dodge Intrepid have been created. The models are intended for studying the vehicle’s behavior in full frontal, frontal offset and side impact collisions. These models are suitable for evaluating vehicle performance and occupant safety in a wide variety of impact situations, and are also suitable for part and material substitution studies to support PNGV (Partnership for New Generation of Vehicles) research. The geometry for these models was created by careful scanning and digitizing of the entire vehicle. High degree of detail is captured in the BIW, the front-end components and other areas involved in frontal, frontal offset and side impact on the driver’s side.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
X