Refine Your Search

Topic

Search Results

Technical Paper

A Drag-Reduction Prediction Model for Truck Platoons

2024-04-09
2024-01-2548
Truck platooning is an emerging technology that exploits the drag reduction experienced by bluff bodies moving together in close longitudinal proximity. The drag-reduction phenomenon is produced via two mechanisms: wake-effect drag reduction from leading vehicles, whereby a following vehicle operates in a region of lower apparent wind speed, thus reducing its drag; and base-drag reduction from following vehicles, whereby the high-pressure field forward of a closely-following vehicle will increase the base pressure of a leading vehicle, thus reducing its drag. This paper presents a physics-guided empirical model for calculating the drag-reduction benefits from truck platooning. The model provides a general framework from which the drag reduction of any vehicle in a heterogeneous truck platoon can be calculated, based on its isolated-vehicle drag-coefficient performance and limited geometric considerations.
Journal Article

A Novel Technique to Determine Free-Stream Velocity from Ground-Based Anemometric Measurements During Track Tests

2016-09-27
2016-01-8023
A novel method was developed to predict the free-stream velocity experienced by a traveling vehicle based on track-side anemometric measurements. The end objective of this research was to enhance the reliability of the prediction of free-stream conditions in order to improve the accuracy of aerodynamic drag coefficient (CD) assessments from track tests of surface vehicles. Although the technique was applied to heavy-duty vehicles in the present work, it is equally applicable to any vehicle type. The proposed method is based on Taylor’s hypothesis, a principle applied in fluid mechanics to convert temporal signals into the spatial domain. It considers that the turbulent wind velocity fluctuations measured at one point are due to the "passage of an unchanging pattern of turbulent motion over the point". The method is applied to predict the wind velocity that the vehicle will experience as it encounters a wind pattern detected earlier by an anemometer located upwind.
Journal Article

A System for Simulating Road-Representative Atmospheric Turbulence for Ground Vehicles in a Large Wind Tunnel

2016-04-05
2016-01-1624
Turbulence is known to influence the aerodynamic and aeroacoustic performance of ground vehicles. What is not thoroughly understood are the characteristics of turbulence that influence this performance and how they can be applied in a consistent manner for aerodynamic design and evaluation purposes. Through collaboration between Transport Canada and the National Research Council Canada (NRC), a project was undertaken to develop a system for generating road-representative turbulence in the NRC 9 m Wind Tunnel, named the Road Turbulence System (RTS). This endeavour was undertaken in support of a larger project to evaluate new and emerging drag reduction technologies for heavy-duty vehicles. A multi-stage design process was used to develop the RTS for use with a 30% scale model of a heavy-duty vehicle in the NRC 9m Wind Tunnel.
Technical Paper

Advanced Real-time Aerodynamic Model Identification Technique

2001-09-11
2001-01-2965
The Flight Research Laboratory (FRL), National Research Council (NRC) of Canada is currently developing an in-flight aircraft aerodynamic model identification technique that determines the small perturbation model at a given test condition. Initial demonstrations have been carried out using the NRC Falcon 20 research aircraft. An efficient system architecture, in terms of both software algorithms and hardware processing, has been designed to meet the stringent near real-time requirements of an in-flight system. As well, novel hardware and software techniques are being applied to the calibration and measurement of the fundamental in-flight parameters, such as air data. The small perturbation models are then combined to develop a global model of the aircraft that is validated by comparing the model response to flight data. The maneuvers were performed according to the FAA Acceptance Test Guide (ATG).
Journal Article

Aerodynamic Drag of Road Vehicles in Close Lateral Proximity

2023-04-11
2023-01-0952
Aerodynamic interaction between vehicles on a roadway can modify the fuel use and greenhouse gas emissions of the vehicle relative to their performance under isolated, uniform-wind conditions. A comprehensive wind-tunnel study was undertaken to examine changes to the aerodynamic drag experienced by vehicles in close proximity, in adjacent lanes. Wind-load measurements were conducted for two general configurations: 15%-scale testing with light-duty-vehicle (LDV) models, and 6.7%-scale testing with a heavy-duty vehicle (HDV) model. For the LDV study, a DrivAer model was tested with a proximate AeroSUV model or an Ahmed model at lateral distances representing 75%, 100%, and 125% of a typical highway lane spacing, and for longitudinal distances up to 2 vehicle lengths forward and back. Commensurate measurements were conducted for the AeroSUV model with the proximate DrivAer or Ahmed model.
Journal Article

Aerodynamic Performance of Flat-Panel Boat-Tails and Their Interactive Benefits with Side-Skirts

2016-09-27
2016-01-8015
This paper describes an investigation of the performance potential of conventional flat-panel boat-tail concepts applied to tractor-trailer combinations. The study makes use of data from two wind-tunnel investigations, using model scales of 10% and 30%. Variations in boat-tail geometry were evaluated including the influence of length, side-panel angle and shape, top-panel angle and vertical position, and the presence of a lower panel. In addition, the beneficial interaction of the aerodynamic influence of boat-tails and side-skirts that provides a larger drag reduction than the sum of the individual-component drag reductions, identified in recent years through wind-tunnel tests in different facilities, has been further confirmed. This confirmation was accomplished using combinations of various boat-tails and side-skirts, with additional variations in the configuration of the tractor-trailer configuration.
Technical Paper

Aircraft Performance Degradation - the Effects of Inflight Icing upon Lift, Drag and Propulsive Efficiency

2011-06-13
2011-38-0073
Data is presented from a number of flight research aircraft, which have been involved in the research of the effects of inflight icing, in a variety of atmospheric supercooled droplet and mixed-phase icing environmental conditions. The aircraft Types considered cover both Pneumatic and Thermal Ice Protection Systems (IPS). Icing includes supercooled droplet impact icing upon airframe and propeller blades and cold-soaked frost icing. The drag effects of inflight icing, from mixed-phase small and large droplets encountered during the course of SALPEX cloud physics research operations, upon a Fokker F-27 turboprop transport aircraft, have been analyzed. Furthermore, during the course of AIRS 1.5 and AIRS II inflight icing flight research operations, the NRC Convair conducted aerodynamic characterization maneuvers, following and during icing accretion in a wide range of environmental conditions of altitude, air temperature, LWC and droplet spectra.
Technical Paper

An Autonomous Steering Control Scheme for Articulated Heavy Vehicles Using - Model Predictive Control Technique

2023-04-11
2023-01-0658
This article presents an autonomous steering control scheme for articulated heavy vehicles (AHVs). Despite economic and environmental benefits in freight transportation, lateral stability is always a concern for AHVs in high-speed highway operations due to their multi-unit vehicle structures, and high centers of gravity (CGs). In addition, North American harsh winter weather makes the lateral stability even more challenging. AHVs often experience amplified lateral motions of trailing vehicle units in high-speed evasive maneuvers. AHVs represent a 7.5 times higher risk than passenger cars in highway operation. Human driver errors cause about 94% of traffic collisions. However, little attention has been paid to autonomous steering control of AHVs.
Journal Article

An Investigation of the Influence of Close-Proximity Traffic on the Aerodynamic Drag Experienced by Tractor-Trailer Combinations

2019-04-02
2019-01-0648
Recent research to investigate the aerodynamic-drag reduction associated with truck platooning systems has begun to reveal that surrounding traffic has a measurable impact on the aerodynamic performance of heavy trucks. A 1/15-scale wind-tunnel study was undertaken to measure changes to the aerodynamic drag experienced by heavy trucks in the presence of upstream traffic. The results, which are based on traffic conditions with up to 5 surrounding vehicles in a 2-lane configuration and consisting of 3 vehicle shapes (compact sedans, SUVs, and a medium-duty truck), show drag reductions of 1% to 16% for the heavy truck model, with the largest reductions of the same order as those experienced in a truck-platooning scenario. The data also reveal that the performance of drag-reduction technologies applied to the heavy-truck model (trailer side-skirts and a boat-tail) demonstrate different performance when applied to an isolated vehicle than to conditions with surrounding traffic.
Technical Paper

Analysis of the Unsteady Wakes of Heavy Trucks in Platoon Formation and Their Potential Influence on Energy Savings

2021-04-06
2021-01-0953
The authors present transient wind velocity measurements from two successive, well-documented truck platooning track-test campaigns to assess the wake-shedding behavior experienced by trucks in various platoon formations. Utilizing advanced analytics of data from fast-response (100-200-Hz) multi-hole pressure probes, this analysis examines aerodynamic flow features and their relationship to energy savings during close-following platoon formations. Applying Spectral analysis to the wind velocity signals, we identify the frequency content and vortex-shedding behavior from a forward truck trailer, which dominates the flow field encountered by the downstream trucks. The changes in dominant wake-shedding frequencies correlate with changes to the lead and follower truck fuel savings at short separation distances.
Technical Paper

Assessment of the Dynamic Stability Characteristics of the Bell Model M427 Helicopter Using Parameter Estimation Technology

2002-11-05
2002-01-2916
A joint program between Bell Helicopter Textron Canada and the Flight Research Laboratory of Canada's National Research Council was initiated to address the aerodynamic modelling challenges of the Bell M427 helicopter. The primary objective was to use the NRC parameter estimation technique, based on modified maximum likelihood estimation (MMLE), on a limited set of flight test data to efficiently develop an accurate forward-flight mathematical model of the Bell M427. The effect of main rotor design changes on the aircraft stability characteristics was also investigated, using parameter estimation. This program has demonstrated the feasibility of creating a forward-flight rotorcraft aerodynamic mathematical model based on time-domain parameter estimation, and the ability of a 6 degree-of-freedom MMLE model to accurately document the impact of minor rotor modifications on aircraft stability.
Technical Paper

Comparison Tests Between Major European and North American Automotive Wind Tunnels

1983-02-01
830301
The results of comparative aerodynamic force measurements on a full-scale notchback-type vehicle, performed between 6 European companies operating full-scale automotive wind tunnels, were published in the SAE Paper 800140. Correlation tests with the same vehicle have been extended to 2 further European and 3 North American wind tunnels. First the geometry, the design and the flow data of the different wind tunnels is compared. The facilities compared include wind tunnels with open-test-sections, closed-test-sections and one tunnel with slotted side walls. The comparison of results, especially for drag coefficients, show that the correlation between the differently designed wind tunnels is reasonable. Problems of blockage correction are briefly discussed. The comparison tests furthermore revealed that careful design of the wheel pads and blockage corrections for lift seem to be very influential in achieving reasonable lift correlations. Six-component measurements show similar problems.
Journal Article

Considerations for the Wind Tunnel Simulation of Tractor-Trailer Combinations: Correlation of Full- and Half-Scale Measurements

2013-09-24
2013-01-2456
The 9-meter wind tunnel of the National Research Council (NRC) of Canada is commonly employed in testing of class 8 tractors at full- and model-scales. In support of this work a series of tests of an identical model at full- and half-scale were performed to investigate some of the effects resulting from simulation compromises. Minimum Reynolds Number considerations drive the crucial decisions of what scale and speed to employ for testing. The full- and half-scale campaigns included Reynolds Number sweeps allowing conclusions to be reached on the minimum Reynolds number required for testing of fully-detailed commercial truck models. Furthermore the Reynolds sweeps were repeated at a variety of yaw angles to examine whether the minimum Reynolds Number was a function of yaw angle and the resulting flow regime changes. The test section of the NRC 9-meter wind tunnel is not sufficiently long to accommodate a full-scale tractor and a typical trailer length of 48′ or more.
Technical Paper

Controlling the Forming of Thermoplastics through Forming Power

2013-04-08
2013-01-0602
Controlling the forming of large thermoplastic parts from a simulation requires very precise predictions of the pressure and volume profile evolution. Present pressure profile based simulations adequately predict the thickness distribution of a part, but the forming pressure and volume profile development lack the precision required for process control. However new simulations based on the amount of power required to form the material can accurately predict these pressure and volume profiles. In addition online monitoring of the forming power on existing machines can be easily implemented by installing a flow rate and pressure meter at the gas entrance, and if necessary, exits of the part. An important additional benefit is that a machine thus equipped can function as an online rheometer that can characterize the viscosity of the material at the operating point by tuning the simulation to the online measurements.
Technical Paper

Design, Characterization and Initial Testing of a Vertical Stabilizer Common Research Model for Aircraft Ground Icing Testing

2023-06-15
2023-01-1439
Under contract to Transport Canada (TC) and with joint funding support from the Federal Aviation Administration (FAA), a vertical stabilizer common research model (VS-CRM) has been designed and built by the National Research Council of Canada (NRC). This model is a realistic, scaled representation of modern vertical stabilizer designs without being specific to a particular aircraft. The model was installed and tested in the NRC 3 m × 6 m Icing Wind Tunnel in late 2021/early 2022. Testing was led by APS Aviation Inc., with support from NRC and NASA, in order to observe the anti-icing fluids flow-off behavior with and without freezing or frozen precipitation during simulated take-off velocity profiles. The model dry-air aerodynamic properties were characterized using flow visualization tufts and boundary layer rakes. Using this data, a target baseline configuration was selected with a yaw angle equal to 0° and rudder deflection angle equal to -10°.
Technical Paper

Development and Commissioning of a Linear Compressor Cascade Rig for Ice Crystal Research

2011-06-13
2011-38-0079
This paper describes the commissioning of a linear compressor cascade rig for ice crystal research. The rig is located in an altitude chamber so the test section stagnation pressure, temperature and Mach number can be varied independently. The facility is open-circuit which eliminates the possibility of recirculating ice crystals reentering the test section and modifying the median mass diameter and total water content in time. As this is an innovative facility, the operating procedures and instrumentation used are discussed. Sample flow quality data are presented showing the distribution of velocity, temperature, turbulence intensity and ice water concentration in the test section. The control and repeatability of experimental parameters is also discussed.
Technical Paper

Do Turbulent Premixed Flame Fronts in Spark-Ignition Engines Behave Like Passive Surfaces?

2000-06-19
2000-01-1942
A widely held belief in the combustion community is that the chemical and hydrodynamic structure of a stretched laminar premixed flame can be preserved in a turbulent flow field over a range of conditions collectively known as the flamelet regime, and the homogeneous charge spark-ignition engine combustion falls within the domain of this regime. The major assumption in the laminar flamelet concept as applied to the turbulent premixed flames is that the flame front behaves as a constant-property passive scalar surface, and an increase in the wrinkled flame surface area with increasing turbulence intensity is the dominant mechanism for the observed flame velocity enhancement. The two approaches that have been recently used for estimating a measure of the wrinkled flame surface area in spark-ignition engines and other premixed flames are the flame surface density concept and fractal geometry.
Technical Paper

Evaluation of Visual Failure versus Aerodynamic Limit for a Snow Contaminated Anti-Iced Wing Section during Simulated Takeoff

2019-06-10
2019-01-1972
Under contract to Airlines for America (A4A), APS Aviation Inc. (APS), in collaboration with the National Research Council of Canada (NRC), completed an aircraft ground icing exploratory research project at the NRC 3 m × 6 m Wind Tunnel in Ottawa in January 2019. The purpose of this project was to investigate the feasibility of using aerodynamic data to evaluate the performance of contaminated anti-icing fluid, rather than the traditional visual fluid failure indicators that are used to develop Holdover Times (HOTs). The aerodynamic performance of a supercritical airfoil model with anti-icing fluids and snow contamination was evaluated against the clean, dry performance of the airfoil in order to calculate the associated aerodynamic penalty. The visual failure of the fluid was also evaluated for each run, and the visual and aerodynamic results were compared against each other for each contamination exposure time.
Journal Article

Evaluation of the Aerodynamics of Drag Reduction Technologies for Light-duty Vehicles: a Comprehensive Wind Tunnel Study

2016-04-05
2016-01-1613
In a campaign to quantify the aerodynamic drag changes associated with drag reduction technologies recently introduced for light-duty vehicles, a 3-year, 24-vehicle study was commissioned by Transport Canada. The intent was to evaluate the level of drag reduction associated with each technology as a function of vehicle size class. Drag reduction technologies were evaluated through direct measurements of their aerodynamic performance on full-scale vehicles in the National Research Council Canada (NRC) 9 m Wind Tunnel, which is equipped with a the Ground Effect Simulation System (GESS) composed of a moving belt, wheel rollers and a boundary layer suction system. A total of 24 vehicles equipped with drag reduction technologies were evaluated over three wind tunnel entries, beginning in early 2014 to summer 2015. Testing included 12 sedans, 8 sport utility vehicles, 2 minivans and 2 pick-up trucks.
Journal Article

Fracture Behavior of Typical Structural Adhesive Joints Under Quasi-Static and Cyclic Loadings

2010-04-12
2010-01-0969
Structural adhesive joints are expected to retain integrity in their entire service-life that normally involves cyclic loading concurrent with environmental exposure. Under such a severe working condition, effective determination of fatigue life at different temperatures is crucial for reliable joint design. The main goal of this work was thus defined as evaluation of fatigue performance of adhesive joints at their extreme working temperatures in order to be compared with their fracture properties under static loading. A series of standard double-cantilever-beam (DCB) specimens have been bonded by three structural 3M epoxy adhesives selected from different applications. The specimens were tested under monotonic and cyclic opening loads (mode-I) in order to evaluate the quasi-static and fatigue performances of selected adhesives at room temperature, 80°C and -40°C.
X