Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Crashworthiness of Automotive Stamped Parts Using High Strength Steel Sheets

2002-03-04
2002-01-0641
Forming and strain rate effects on crashworthiness of automotive body components were investigated in this study. Dynamic tensile tests were carried out to establish the stress-strain relationships at elevated strain rates. Dynamic tests of bending and axial crashing at various speeds were conducted using a stamped hat square column. The experimental results indicate that the absorbed energy of the hat square column decreased with the increase of material thinning in case of high strength steels. FEM analyses using material models with both strain rate sensitivity and forming effects were carried out to evaluate the computer prediction accuracy of crashworthiness.
Technical Paper

Residual Forming Effects on Full Vehicle Frontal Impact and Body-in-White Durability Analyses

2002-03-04
2002-01-0640
Forming of sheet metal structures induces pre-strains, thickness variations, and residual stresses. Pre-strains in the formed structures introduce work hardening effects and change material fatigue properties such as stress-life or strain-life. In the past, crashworthiness and durability analyses have been carried out using uniform sheet thickness and stress- and strain-free initial conditions. In this paper, crashworthiness and durability analyses of hydroformed front rails, stamped engine rails and shock towers on a full vehicle and a Body-In-White structure are performed considering the residual forming effects. The forming effects on the crash performance and fatigue life are evaluated.
X