Refine Your Search

Topic

Author

Search Results

Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Technical Paper

A Consideration of Vehicle's Door Shutting Performance

1981-02-01
810101
Many papers have mentioned, in passing, a phenomena that is known as “airtightness”, which is one factor that hinders automobile doors from closing. It also causes the eardrums of any passengers in the vehicle to be temporarily pressurized when the door is closed. However, few documents have considered this phenomena in detail. In this paper, we investigate the magnitude of “airtightness” as it affects ear pressure and examine its relationship to such factors as the volume of the passenger compartment, door's opening area and its inertial moment. Finally, we utilized estimation methods to predict its influence on the force required to close the door and the amount of the resultant air draft.
Technical Paper

A Lightweight, Multifunctional Plastic Reinforcement for Body Panels

1990-02-01
900292
A light weight,multifunctional plastic reinforcement has been developed for the outer body panels of vehicles. This new plastic reinforcement,composed mainly of polyvinylchloride resin, epoxy resin and an organic foaming agent, provides a 63% weight reduction over conventional plastic reinforcements, while adding the damping function to outer body panels. This paper introduces the process followed in developing the new plastic reinforcement and describes its characteristics. This new plastic reinforcement is already employed in the Nissan S-Cargo model, and it will be adopted in other passenger car models to be released in the near future.
Technical Paper

A Motor-Drive System Design That Takes Into Account EV Characteristics

1999-03-01
1999-01-0739
This paper discusses various design factors that must be considered in achieving a practical motor-drive system for electric vehicles. When we design a motor-drive system for an electric vehicle, pursuit of high efficiency is required, and the system also has to have a good ease of use in practical situation. The following configuration is preferable for the realization of the vehicle that meets these requirements (1) A direct- coupled geartrain is used. (2) A permanent magnet synchronous motor is used as the traction motor. (3) The motor is inverter driven (battery operated) (4) A controller is needed to manage torque characteristics. When we design the motor-drive system using these configuration, we have to resolve various issues of the system concerning the vehicle and drive system performance fir practical use. By resolving these design issues, the practical performance of EVs can be improved and they can also make full use of the advantages of a motor-drive system.
Technical Paper

A New Approach to Finding Optimum Planetary Gear Trains for Automatic Transmissions

1993-03-01
930676
There has been a growing need to develop more compact automatic transmissions with a greater number of speeds for better fuel economy and better driveability. This study investigated a method for determining suitable planetary gear trains for today's transmissions. A computer program has been developed for application to five-speed transmissions consisting of two planetary gearsets. By analyzing various gear train possibilities, the program can identify which gearsets are suitable for different conditions, including the number of speeds, the number of binding elements, topological suitability and other factors.
Technical Paper

A Study of Car Body Structure to Reduce Environmental Burdens

2003-10-27
2003-01-2833
In the initial design stage, it is important to discuss what kind of body concept is effective from a viewpoint of environment burden reduction. This paper describes the importance of both weight reduction and recycling through conducting LCA (Life Cycle Assessment) for four kinds of body structures. In addition, using each software, DFMA (Design for Manufacture and Assembly), DFE (Design for Environment) and LCA to parts unit, each effectiveness was discussed through the assessment of the material-hybrid body.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

A Study of the Power Transfer Systems for HEVs

2006-04-03
2006-01-0668
A key factor influencing the performance of a hybrid electric vehicle (HEV) is how the engine and motor-generator (MG) are combined with the vehicle. There have been several types of combinations such as power transfer by using the mechanical transmission of conventional vehicles or the electrical transmission originally designed for HEVs. The objectives of this research were to clarify fuel economy characteristics according to the type of power transfer system used and to identify the requirements for MG system development by analyzing MG operation conditions in each power transfer mode. HEV systems for passenger car use were modeled on the basis of a functional classification. Simulations were conducted using the characteristics of the power transfer systems as parameters to evaluate fuel economy tendencies under several driving modes. The mechanism of the fuel economy tendencies was then analyzed to evaluate quantitatively the effect of each power transfer system on fuel economy.
Journal Article

Advanced Technology for Dry Multi-Plate Clutch in FWD HEV Transmission (JATCO CVT8 HYBRID)

2015-04-14
2015-01-1094
There has been a growing need in recent years to further improve vehicle fuel efficiency and reduce CO2 emissions. JATCO began mass production of a transmission for rear-wheel-drive (RWD) hybrid vehicle with Nissan in 2010, which was followed by the development of a front-wheel-drive (FWD) hybrid system (JATCO CVT8 HYBRID) for use on a midsize SUV in the U.S. market. While various types of hybrid systems have been proposed, the FWD system adopts a one-motor two-clutch parallel hybrid topology which is also used on the RWD hybrid. This high-efficiency system incorporates a clutch for decoupling the transmission of power between the engine and the motor. The hybrid system was substantially downsized from that used on the RWD vehicle in order to mount it on the FWD vehicle. This paper describes various seal technologies developed for housing the dry multi-plate clutch inside the motor, which was a key packaging technology for achieving the FWD hybrid system.
Technical Paper

Aerodynamic Development of the Newly Developed Electric Vehicle

2011-05-17
2011-39-7230
This paper explains the specific measures taken to develop the body and underfloor of the newly developed Electric Vehicle for the purpose of reducing drag. Additionally, the headlamps and fenders were designed with innovative shapes to reduce wind noise that occurs near the outside mirrors. As a result of utilizing the aerodynamic advantages of an electric vehicle to maximum effect, The newly developed Electric Vehicle achieves a class-leading drag coefficient and interior quietness.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

An Automatic Sealing Robot System for Cars

1987-11-08
871258
Car rust has been a big problem. To improve the effectiveness of rustproofing, car materials and some methods are being developed. Sealing the seams of body panels is one important method. But the sealing operation is a difficult process and it is not easy to maintain quality standards for workmen and automatized systems. To overcome this problem, we developed an automatic robot sealing system with following features: 1. The system can be easily installed on an existing conveyor and follows the line conveyor in synchronization during sealing operation. 2. Small robots can cover wide area inside the vihecle. 3. New sealant supply controllers can regurate the supply rate in response to speed and motion of robots with a high accuracy. This system has already been installed in the Murayma plant and has proved successful in achieving a high quality sealing result.
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

2000-03-06
2000-01-0740
This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

Application Development of Low Carbon Type Dual Phase 980MPa High Strength Steel

2006-04-03
2006-01-1586
Use of high strength steel (HSS) could be an important consideration in achieving competitive weight and safety performance of the body-in-white (BIW). This study covers key technical issues in the application development. Many aspects were studied such as formability, weldability and impact strength for application of this grade to the BIW. One of the key issues is spot weldability, especially in the assembly of heavy gauge materials for structural parts. The spot weld strength appears not to satisfy the target for some HSS applications, when hardness of the nugget is high. The relation between weld strength and the chemical composition of steel sheets was studied, because hardness can be controlled by chemical composition and welding conditions. It was found that using lower carbon content or carbon equivalent compared to conventional grades could improve weld strength.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Application of Prediction Formulas to Aerodynamic Drag Reduction of Door Mirrors

2015-04-14
2015-01-1528
It is considered that door mirror drag is composed of not only profile drag but also interference drag that is generated by the mixing of airflow streamlines between door mirrors and vehicle body. However, the generation mechanism of interference drag remained unexplained, so elucidating mechanism for countermeasures reducing drag have been needed. In this study, the prediction formulas for door mirror drag expressed by functions in relation to velocities around the vehicle body were derived and verified by wind tunnel test. The predicted values calculated by formulas were compared with the measured values and an excellent agreement was found. In summary, new prediction formulas made it possible to examine low drag mirror including profile and interference drag.
Technical Paper

Application of Predictive Noise and Vibration Analysis to the Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940993
The target performance of a new engine has to be obtained under various restrictions such as cost and weihgt. It is particularly important to predict the engine noise and vibration performance at an early stage. For this purpose the analytical methods have been developed, which include the prediction of the absolute noise and vibration level by inputting a given exciting force into the model. These methods were applied to the development of the new engine. As a result, the characteristics of an aluminum cylinder block were used effectively to achieve a new lightweight V6 engine with low noise and vibration levels.
Technical Paper

Challenges of Widespread Marketplace Acceptance of Electric Vehicles -- Towards a Zero-Emission Mobility Society

2010-10-19
2010-01-2312
Curbing emissions of carbon dioxide (CO₂), which is believed by many scientists to be a major contributor to global warming, is one of the top priority issues that must be addressed by automobile manufacturers. Automakers have set their own strategies to improve fuel economy and to reduce CO₂ emissions. Some of them include integrated approaches, focusing on not only improvement of vehicle technology, but also human factors (eco-driving support for drivers) and social and transportation factors (traffic management by intelligent transportation systems [ITS]). Among them, electric vehicles (EVs) will be a key contributor to attaining the challenging goal of CO₂ reduction. Mass deployment of EVs is required to achieve a zero-emission society. To accomplish that, new advanced technologies, new business schemes, and new partnerships are required.
X