Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of the NHTSA Research Offset Oblique and Small Overlap Impact Tests and the IIHS Moderate and Small Overlap Tests

2014-04-01
2014-01-0537
The National Highway Traffic Safety Administration (NHTSA) and the Insurance Institute for Highway Safety (IIHS) have both developed crash test methodologies to address frontal collisions in which the vehicle's primary front structure is either partially engaged or not engaged at all. IIHS addresses Small Overlap crashes, cases in which the vehicle's primary front energy absorbing structure is not engaged, using a rigid static barrier with an overlap of 25% of the vehicle's width at an impact angle of 0°. The Institute's Moderate Overlap partially engages the vehicle's primary front energy absorbing structure using a deformable static barrier with 40% overlap at a 0° impact angle. The NHTSA has developed two research test methods which use a common moving deformable barrier impacting the vehicle with 20% overlap at a 7° impact angle and 35% overlap at a 15° impact angle respectively.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A New System for Independently Controlling Braking Force Between Inner and Outer Rear Wheels

1989-02-01
890835
This paper presents a new system for controlling the braking force between the inner and outer wheels in a turn independently. Vehicle cornering performance has improved noticeably in recent years thanks to advances achieved in tire and suspension technology. Due to this improvement, vehicle handling characteristics during braking have taken on added importance. To achieve stabler handling properties during braking in a turn, a new evaluation method is being used at Nissan to analyze vehicle directional stability. The analytical results show that decreasing the yaw moment before wheel locking occurs is effective in achieving stabler handling. An effective approach to decreasing the yaw moment is to control the braking force between the inner and outer wheels independently. Base on these analytical results and experimental data obtained with actual vehicles, a new system has been developed that provides such independent control over the braking force.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Technical Paper

A Study on the Torque Capacity of a Metal Pushing V-Belt for CVTs

1998-02-23
980822
The mechanism causing the micro slip characteristic of a metal CVT belt during torque transmission was analyzed, focusing on the gap distribution between the elements. It was hypothesized that gaps between the elements cause slip to occur between the elements and the pulleys when the belt is squeezed between the two halves of the pulleys, and the slip ratio was calculated theoretically on that assumption. The μ-v (friction coefficient versus sliding velocity) characteristic between the elements and the pulleys was measured and the results were used in calculating the slip ratio. As a result, a simulation procedure was developed for predicting the slip-limit torque of the belt on the basis of calculations. The slip ratio found by simulation and the calculated slip-limit torque showed good quantitative agreement with the experimental data, thereby confirming the validity of the simulation procedure.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

An Application of CAP (Computer-Aided Principle) to Structural Design for Vehicle Crash Safety

2007-04-16
2007-01-0882
The Computer-Aided Principle (CAP) is applied in this study as an effective approach to the crashworthiness design of the vehicle front-end structure. With this method, correlative parameters are extracted in a parametric study by using a cluster analysis. The results can help engineers to understand the fundamental mechanisms of structural phenomena. A simulation example of an offset frontal crash against a deformable barrier (ODB) is presented to show the effectiveness of the proposed method.
Technical Paper

Analysis of Rollover Restraint Performance With and Without Seat Belt Pretensioner at Vehicle Trip

2002-03-04
2002-01-0941
Eight rollover research tests were conducted using the 2001 Nissan Pathfinder with a modified FMVSS 208 dolly rollover test method where the driver and right front dummy restraint performance was analyzed. The rollover tests were initiated with the vehicle horizontal, not at a roll angle. After the vehicle translated laterally for a short distance, a trip mechanism was introduced to overturn the vehicle. Retractor, buckle, and latch plate performance in addition to the overall seat belt performance was analyzed and evaluated in the rollover test series. Retractor pretensioners were activated near the rollover trip in three of the tests to provide research data on its effects. Various dummy sizes were utilized. The test series experienced incomplete data collection and a portion of the analog data was not obtained. National Automotive Sampling System (NASS) data was also analyzed to quantify the characteristics of real world rollovers and demonstrated the benefits of restraint use.
Technical Paper

Analysis of Steering Force at Low Speed

1979-02-01
790739
From the view point of vehicle weight reduction and saving resources, it would be desirable to decrease the steering effort eliminating the assistance of power. Therefore, we have analyzed the steering effort at low vehicle speeds where steering effort is great, and have introduced a theoretical model based on the contact surface deflection recovering process of rolling tires. This deflection comes from the lateral rigidity and the total deflection of tires. The following results were obtained from this study. As the vehicle speed increases, the steering effort decreases exponentially. As the steering speed increases or as the vehicle speed decreases, the steering effort increases and the effort approaches the final value which equals the static steering effort. The static steering effort is not relative to steering speed. These theoretical results are supported by vehicle experiments.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Appling CAE to Understand the Causality of Dummy Neck Injury Readings

2011-04-12
2011-01-1069
The progress of computer technology and CAE methodology makes it possible to simulate dummy injury readings in vehicle crash simulations. Dummy neck injuries are generally more difficult to simulate than injuries to other regions such as the head or chest. Accordingly, improving the accuracy of dummy neck injury data is a major concern in frontal occupant safety simulations. This paper describes the use of an advanced airbag modeling methodology to improve the accuracy of dummy neck injury readings. First, the following items incorporated in the advanced airbag model are explained. (1) The Finite Point Method (FPM) is used to simulate the flow of gas. (2) A folding model is applied to simulate the folded condition. (3) The fabric material properties used in the simulation take into account anisotropy in the fiber directions and the nonlinear, hysteresis characteristics of stiffness.
Technical Paper

Automatic Falling Occupant Protecting Net - Preliminary Study

1970-02-01
700452
An automatic, falling, occupant-protecting net is being developed for spreading in front of automobile occupants in the time interval between vehicle impact and occupant collision. The device is designed to counteract forward body acceleration and minimize head, neck, and chest injuries. This device was investigated by sled and barrier tests using anthropomorphic dummies. Significant improvements in occupant kinematics and remarkable reduction in head and chest impact force has been observed. Some problems such as whiplash injury await solution but continuing investigation of proposed measures of correction show that they are not insurmountable.
Technical Paper

Compact and Long-Stroke Multiple-Link VCR Engine Mechanism

2007-10-29
2007-01-3991
A multiple-link variable compression ratio (VCR) mechanism is suitable for a long-stroke engine by providing the following characteristics: (1) a nearly symmetric piston stroke and (2) an upper link that stays vertical around the time of the maximum combustion pressure. These two characteristics work to reduce force inputs to the piston. The maximum inertial force around top dead center is reduced by the effect of the first characteristic. The second characteristic is effective in reducing piston side thrust force and helps ease piston pin lubrication. Because of the combined effect of these characteristics, the piston skirt can be made smaller and the piston pin can be shortened. That makes it possible for the piston skirt and piston pin to move between the counterweights, resulting in a downward extension of the piston stroke. As a result, a longer-stroke engine mechanism can be achieved without making the cylinder block taller.
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Compatibility for Frontal Impact Collisions Between Heavy and Light Cars

2003-05-19
2003-06-0176
Recently, frontal impact compatibility is discussed internationally and various procedures to assess compatibility and various measures to improve compatibility have been proposed. Considering the above, car-to-car tests between a heavy car and a light car were conducted to clarify the effect of homogenizing the front structure on compatibility. Then correlation between the results of the barrier impact tests proposed as the procedures to assess compatibility and the car-to-car test results and the requirements for the assessment procedure were discussed.
Journal Article

Coupled 6DoF Motion and Aerodynamic Crosswind Simulation Incorporating Driver Model

2017-03-28
2017-01-1525
Because of rising demands to improve aerodynamic performance owing to its impact on vehicle dynamics, efforts were previously made to reduce aerodynamic lift and yawing moment based on steady-state measurements of aerodynamic forces. In recent years, increased research on dynamic aerodynamics has partially explained the impact of aerodynamic forces on vehicle dynamics. However, it is difficult to measure aerodynamic forces while a vehicle is in motion, and also analyzing the effect on vehicle dynamics requires measurement of vehicle behavior, amount of steering and other quantities noiselessly, as well as an explanation of the mutual influence with aerodynamic forces. Consequently, the related phenomena occurring in the real world are still not fully understood.
Technical Paper

Development and Analysis of New Traction Control System with Rear Viscous LSD

1991-02-01
910700
Traction control systems (TCSs) serve to control brake pressure and engine torque, thereby reducing driving wheel spin for improved stability and handling. Systems are divided into two basic types by the brake control configuration. One type is a one-channel left-right common control system and the other is a two-channel individual control system. This paper presents an analysis of these two types of TCS configurations in terms of handling, acceleration, stability, yaw convergence and other performance parameters. The systems are compared with and without a limited-slip differential (LSD) under various road conditions, based on experimental data and computer simulations. As a result of this work, certain Nissan models are now equipped with a new Nissan Traction Control System with a rear viscous LSD (Nissan V-TCS), which provides both the advantages of a rear viscous LSD in a small slip region and a two-channel TCS in a large slip region.
Technical Paper

Development of Digital Tire Pressure Display Device

1985-06-01
851237
Basic vehicle performance, such as Safety, Comfort and Economy, are by dependent on tire performance, and it is the air pressure in the tire which assures this performance. However, tire air has a tendency to leak naturally, making it necessary to check them periodically. Since a deterioration in vehicle performance resulting from a drop on tire air pressure can not be directly felt by the driver, the number of people maintaining their tires sufficiently is relatively few. There have been many tire pressure warning devices developed which advise the driver when the pressure drops below a prescribed level. Differing from conventional devices, the TWD-III features a 7-step digital display (at a pitch of 0.1 kgf/cm2) which shows the pressure of each tire within an optional range, and it also has a flat tire warning function. The employment of echo effect from clystal vibrator resonance precludes the need to attach a power source on the tire.
Technical Paper

Development of Laser-Textured Dull Steel Sheets with Superior Press Formability

1993-03-01
930808
Surface roughness of steel sheet for automotive use is one of the most important control items, because the surface roughness influences image clarity of painted surface, press formability and easiness in handling during manufacturing and processing of steel sheets. Laser texturing technology is introduced into a roll finishing process of cold rolling, and new type of regular surface roughness profile can be processed on the surface of steel sheets. Effective application method of this technology is investigated at the present day. In Japan, Laser-textured dull steel sheets are used for outer-panels of automotive body as the first application. And image clarity after painting of outer panels has been successful in improving. Nowadays, Laser texturing technology is actually used for manufacturing the high image clarity steel sheets, and they are manufactured in large quantities. Another application of Laser texturing technology is for the inner parts which require pressformability.
X