Refine Your Search

Topic

Author

Search Results

Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

Analysis of Bumper Paint Removal and Development of Paint Removal Equipment

2000-03-06
2000-01-0740
This paper deals with the development of plastics recycling technology, which is one key to resolving environmental and natural resource problems and encouraging recycling activities. Bumpers are among the heaviest plastic auto parts, so the technology for recycling bumpers is strongly required. Paint remaining on bumpers causes the strength of the recycled material to decline and degrades its surface quality. Therefore, unless the paint is removed, it is impossible to use recycled material to manufacture new bumpers. This hampers recycling efforts and results in low-value recycled material. Consequently, it is essential to develop a simple paint removing without chemical substances for practical plastics recycling at low cost. Two topics are discussed in this paper. The first concerns the mechanism of paint removal and the development of a technique for utilizing that mechanism.
Technical Paper

Application Development of Low Carbon Type Dual Phase 980MPa High Strength Steel

2006-04-03
2006-01-1586
Use of high strength steel (HSS) could be an important consideration in achieving competitive weight and safety performance of the body-in-white (BIW). This study covers key technical issues in the application development. Many aspects were studied such as formability, weldability and impact strength for application of this grade to the BIW. One of the key issues is spot weldability, especially in the assembly of heavy gauge materials for structural parts. The spot weld strength appears not to satisfy the target for some HSS applications, when hardness of the nugget is high. The relation between weld strength and the chemical composition of steel sheets was studied, because hardness can be controlled by chemical composition and welding conditions. It was found that using lower carbon content or carbon equivalent compared to conventional grades could improve weld strength.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

Application of Hydroforming Simulation on Development of Automobile Parts

2002-03-04
2002-01-0786
Hydrofrorming is an efficient forming process to produce automotive parts for reducing weight of cars. In order to reduce the period of development of hydrofoming parts, numerical simulation using FEM is applied to evaluate formability. A pipe needs to be bent before hydroforming for forming complicated shape parts. A pipe bending process is also necessary to FEM simulation. In this paper, a highly effective method to create a bent pipe FEM model based on geometrical changing between a pipe before and after bending is proposed. The widely used draw bending process is supposed to be applied. The method can construct the model in a short time. Therefore total computation time can be reduced drastically. The effects of number of integration points and elements to the computed results and springback prediction after bending are also investigated. The proposed method are applied to a actual part, the computed results are in good agreement with the experimental results.
Technical Paper

Deterioration of Heat Resistant Alloys for Automobile Emission Control Equipment

1980-02-01
800318
Various heat resistant alloys are being introduced for use in automobile emission equipment, such as thermal reactors and catalytic converters. For the past several years Japan has been developing alloys which emphasize oxidation resistance. Therefore, oxidation phenomena have been thoroughly researched and clarified. On the other hand, embrittlement, which is a marked deterioration similar to oxide deterioration, has not been studied sufficiently. The major subjects of investigation were the two forms of embrittlement in austenitic heat resistant alloys, caused by the precipitation of σ phase and the absorption of Nitrogen. Useful information was obtained from these results.
Technical Paper

Development of GF-5 0W-20 Fuel-Saving Engine Oil for DLC-Coated Valve Lifters

2014-04-01
2014-01-1478
A suitable GF-5 engine oil formulation is investigated to improve the fuel economy of gasoline engines with hydrogen-free DLC-coated valve lifters. Molybdenum dithocarbamate (MoDTC) is shown to be a suitable friction modifier for low viscosity grade engine oils like 0W-20. A suitable Ca salicylate detergent is also determined from several types examined for maximizing the friction reduction effects of MoDTC. The most suitable Ca salicylate has a chemical structure capable of forming a borophosphate glass film on metal surfaces, which is known to improve the effects of MoDTC. A high viscosity index Group III base oil (VI>140) is also effective in improving fuel efficiency. It is further clarified that the structural design of the polymethacrylate viscosity modifier is another important factor in reducing engine friction.
Technical Paper

Development of High Impact Strength Case Hardening Steel

2003-03-03
2003-01-1310
Improving the impact strength of the differential gears is one way to reduce the size and weight of the final drive unit. Previously, we developed high-strength steel for gear use by adding molybdenum and reducing impurities such as phosphorus and sulfur. However, additional improvement of impact strength is required these days due to higher engine torque and demands for further weight reductions. Toward that end, we focused on boron, which has been used as an element for improving hardenability, and analyzed what effect its addition would have on impact strength. Useful knowledge was obtained for improving impact strength through enhancement of grain boundary toughness. Various steels were then produced experimentally and used in gear strength tests. The results made it possible to improve impact strength while reducing the content of other alloys, resulting in the development of a chromium-molybdenum-boron case hardening steel with superior cold forgeabilty.
Technical Paper

Development of Laser-Textured Dull Steel Sheets with Superior Press Formability

1993-03-01
930808
Surface roughness of steel sheet for automotive use is one of the most important control items, because the surface roughness influences image clarity of painted surface, press formability and easiness in handling during manufacturing and processing of steel sheets. Laser texturing technology is introduced into a roll finishing process of cold rolling, and new type of regular surface roughness profile can be processed on the surface of steel sheets. Effective application method of this technology is investigated at the present day. In Japan, Laser-textured dull steel sheets are used for outer-panels of automotive body as the first application. And image clarity after painting of outer panels has been successful in improving. Nowadays, Laser texturing technology is actually used for manufacturing the high image clarity steel sheets, and they are manufactured in large quantities. Another application of Laser texturing technology is for the inner parts which require pressformability.
Technical Paper

Development of Multi-Layer Plastic Fuel Tanks for Nissan Research Vehicle-II

1987-02-01
870304
Plastic fuel tanks are light in weight and rustproof, and have good design flexibility. For those currently in use, however, which are made of mono-layer high-density polyethylene, fuel permeability is too high to meet U.S. evaporative emission standards, which are stricter than those in Japan or the EEC. For minimize fuel permeation, the formation of a harrier layer of polyamide resin by multilayer (three-resin five-layer) blow molding is considered more promising than sulphonation or fluorination treatment of the polyethylene resin. This paper describes the fuel permeation mechanism, then outlines the development of a multi-layer plastic fuel tank, discussion its structural features and the development of resins.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Development of Transient Knock Prediction Technique by Using a Zero-Dimensional Knocking Simulation with Chemical Kinetics

2004-03-08
2004-01-0618
A transient knock prediction technique has been developed by coupling a zero-dimensional knocking simulation with chemical kinetics and a one-dimensional gas exchange engine model to study the occurrence of transient knock in SI engines. A mixed chemical reaction mechanism of the primary reference fuels was implemented in the two-zone combustion chamber model as the auto-ignition model of the end-gas. An empirical correlation between end-gas auto-ignition and knock intensity obtained through intensive analysis of experimental data has been applied to the knocking simulation with the aim of obtaining better prediction accuracy. The results of calculations made under various engine operating parameters show good agreement with experimental data for trace knock sensitivity to spark advance.
Technical Paper

Development of a Highly Efficient Manufacturing Method for a Plastic Intake Manifold

2002-03-04
2002-01-0605
A plastic intake manifold has been developed for the new QR engine. This manifold has an intricate shape owing to its performance and layout requirements. The die slide injection (DSI) method was selected to manufacture this complicated shape using the world's first application of a common mold forming technique for a three-piece structure. This paper describes the manufacturing technology and the measures adopted to ensure the strength of welded parts, which is a key point of this method. The benefits obtained by applying this plastic intake manifold to the new engine are also described.
Technical Paper

Development of a Technique for Using Oil Viscosity to Reduce Noise Radiated from the Oil Pan

1999-05-17
1999-01-1759
We have developed a vibration damping technique for the Oil Pan to reduce radiation noise. This technique makes use of oil viscosity. To increase vibration damping of oil pan, we use oil viscosity by forming a thin oil film between the oil pan bottom and an added inner plate. This paper presents the results of vibration tests that were conducted to study the oil damping mechanism and results of applying to a small high-speed diesel engine.
Technical Paper

Development of a Wear Resistant Aluminum Alloy for Automotive Components

1999-03-01
1999-01-0350
Hypereutectic Al-Si alloy 390, containing large amounts of hard silicon particles, has mainly been used for wear-resistant alloy applications. In the case of hypereutectic Al-Si alloys, the primary silicon particle size and distribution must be controlled to obtain stable wear resistance. The service life of furnaces and molds is shortened by the high melting and casting temperatures required for controlling primary silicon. Furthermore, machinability is degraded by large primary silicon particles. To overcome these problems, a new wear-resistant Al-Si alloy has been developed which provides good castability and machinability. This alloy also has wear resistance and mechanical properties similar to those of the 390 alloy. Specifically, the problems regarding castability and machinability were solved by decreasing the silicon content of the 390 alloy, but that also reduced wear resistance.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Technical Paper

Effects of Combustion Chamber Insulation on the Heat Rejection and Thermal Efficiency of Diesel Engines

1992-02-01
920543
Experiments were conducted with 4-cylinder and single-cylinder direct injection diesel engines to examine the effects of combustion chamber insulation on heat rejection and thermal efficiency. The combustion chamber was insulated by using a silicon nitride piston cavity that was shrink-fitted into a titanium alloy crown. The effect of insulation on heat rejection was examined on the basis of heat release calculations made from cylinder pressure time histories. High-speed photography was used to investigate combustion phenomena. The results showed that heat rejection was influenced by the combustion chamber geometry and swirl ratio and that it was reduced by insulating the combustion chamber. However, because combustion deteriorated, it was not possible to obtain an improvement in thermal efficiency equivalent to the reduction in heat rejection.
Technical Paper

Effects of Fuel Properties Associated with In-Cylinder Behavior on Particulate Number from a Direct Injection Gasoline Engine

2017-03-28
2017-01-1002
The purpose of this work was to gain a fundamental understanding of which fuel property parameters are responsible for particulate emission characteristics, associated with key intermediate behavior in the engine cylinder such as the fuel film and insufficient mixing. Accordingly, engine tests were carried out using various fuels having different volatility and chemical compositions under different coolant temperature conditions. In addition, a fundamental spray and film visualization analysis was also conducted using a constant volume vessel, assuming the engine test conditions. As for the physical effects, the test results showed that a low volatility fuel displayed high particulate number (PN) emissions when the injection timing was advanced. The fundamental test clearly showed that the amount of fuel film on the impingement plate increased under such operating conditions with a low volatility fuel.
Technical Paper

Extremely Formable Cold Rolled Sheet Steel with Ultra-High Lankford and n Values - Metallurgy and Formabilities

1993-03-01
930783
Extremely formable cold sheet steel with an ultra-high Lankford value of more than 2.5 and an n value of more than 0.27 has been developed. This steel is obtained due to the following factors; using extremely pure IF (Interstitial free) steel, immediate rapid cooling upon completion of rolling in the hot rolling process, a high reduction in the cold rolling process, and a high soaking temperature in the continuous annealing process. This steel sheet shows excellent deep drawability and stretch formability compared with conventional steel sheet (former IF steel and low carbon aluminum-killed steel) as a result of evaluating the limiting drawing ratio and limiting dome height, respectively. This excellent formability is also shown by the model forming tests for simulating the actual stamping of an oilpan and a side-panel. Furthermore, this steel shows the same spot-weldability as that of former IF steel, and zinc phosphatability similar to that of low carbon aluminum-killed steel.
X