Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Gas Chromatography-Based Methods of Analyzing Hydrocarbon Species

1994-03-01
940740
Gas chromatographic methods for analyzing hydrocarbon species in vehicle exhaust emissions were compared in terms of their collection efficiency, detection limit, repeatability and number of species detected using cylinder gas and tailpipe emission samples. The main methods compared were a Tenax cold trap injection (TCT) method (C5-C12 HCs) and a cold trap injection (CTI) method (C2-C4 HCs; C5-C12 HCs). Our own direct (DIR) method was used to confirm the collection efficiencies. Both methods yielded good results, but the CTI method showed low collection efficiency for some C2-C4 HCs. Measurement of individual species is needed with this method for accurate analysis of tailpipe emissions. Both the CTI method and the TCT method combined with the DIR method for determining C2-C4 HCs yielded nearly the same ozone specific reactivity values for the NMHC species analyzed.
Technical Paper

A Dynamic Test Procedure for Evaluation of Tripped Rollover Crashes

2002-03-04
2002-01-0693
Rollover crashes have continued to be a source of extensive research into determining both vehicle performance, and occupant restraint capabilities. Prior research has utilized various test procedures, including the FMVSS 208 dolly fixture, as a basis for evaluating vehicle and restraint performance. This research, using 2001 Nissan Pathfinder sport utility vehicles (SUVs), was conducted to update the status of passenger vehicle rollover testing, and evaluate dynamic test repeatability with a new test procedure. A series of eight rollover tests was conducted using these SUV vehicles, mounted on a modified FMVSS 208 rollover dolly fixture, with instrumented dummies in both front seat positions. This test protocol involved launching the vehicles horizontally, after snubbing the dolly fixture, and having the leading-side tires contact curbing for a trip mechanism.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

A Method for Predicting Connecting Rod Bearings Reliability Based on Seizure and Wear Analysis

1988-02-01
880568
Maintaining reliability of the connecting rod bearing is a very important subject, and the following is a problem that needs to be overcome. Predicting reliability has generally depended on minimum oil film thickness (M.O.F.T), but recently, the engines of passenger cars which have greater power and speed potential than conventional ones are sometimes run beyond their M.O.F.T. limit (a degree of roughness around the crank shaft's axis.) In such a case, it is so difficult to predict reliability according to M.O.F.T., that we need a new index which directly shows seizure and wear. For this purpose, we found that the crank shaft pin temperature can be a key cause of seizure and wear according to an analysis of the relationship between its temperature and the seizure and wear caused intentionally. Using this method, we confirmed that the combination of bearing and crank shaft materials is very important for preventing seizure and wear.
Technical Paper

A New 1.6-Liter Twin-Cam 16-Valve Nissan Engine

1991-02-01
910677
Nissan has developed a new GA16DE engine for use in the new 1991 Sentra. The major development aims for this engine were to achieve ample torque at low to intermediate engine speed and smooth throttle response. These aims, of course, had to be compatible with good fuel economy, quietness, maintenance-free operation and high reliability. In addition, It was necessary to achieve a compact package size despite the twin-cam design. All of those objectives have been attained through the use of a super-long and aerodynamic intake system, variable valve timing control, a low friction, maintenance-free, direct acting valve system, dual direction fuel injectors, and a two-stage cam drive system. This paper discuss the major development objectives, basic engine structure and principal component parts.
Technical Paper

A New Nissan 3.0-liter V-6 Twin-cam Twin-turbo Engine with Dual Intake and Exhaust Systems

1990-02-01
900649
As a new generation sports car engine to lead the field in the 1990s, a 3.0 liter, 60°V, type 6 cylinder, 4 cam, 24 valve engine (VG30DETT) has been developed to achieve the utmost in high performance levels and reliability. it has been mounted on the new model 300ZX and announced in the North America and Japanese markets. The VG30DETT engine is based on the previous VG30DE engine (the engine mounted on the former model 300ZX designed for the market in Japan). The main components, the major driving and the lubrication systems including such parts as the crank shaft,con-rod, cylinder block, piston, exhaust manifold, and oil pan of the VG30DE were thoroughly reviewed and revised. The VG30DETT engine is the result of redesigning the structure of the engine itself and its parts and components to assure durability under, high-level performance requirements.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

A Study of Friction Characteristics of Continuously Variable Valve Event & Lift (VEL) System

2006-04-03
2006-01-0222
A continuously variable valve event and lift (VEL) system, actuated by oscillating cams, can provide optimum lift and event angles matching the engine operating conditions, thereby improving fuel economy, exhaust emission performance and power output. The VEL system allows small lift and event angles even in the engine operating region where the required intake air volume is small and the influence of valvetrain friction is substantial, such as during idling. Therefore, the system can reduce friction to lower levels than conventional valvetrains, which works to improve fuel economy. On the other hand, a distinct feature of oscillating cams is that their sliding velocity is zero at the time of peak lift, which differs from the behavior of conventional rotating cams. For that reason, it is assumed that the friction and lubrication characteristics of oscillating cams may differ from those of conventional cams.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Journal Article

A Study of Reliability Evaluation of Main Bearings for Multicylinder Diesel Engines

2016-04-05
2016-01-0494
In recent years, although experiment technologies on real engines and simulation technologies has been improved rapidly, the tribology contributing factors have not been quantitatively well evaluated to reveal critical lubrication failure mechanisms. In this study the oil film thickness of the main bearings in multicylinder diesel engines was measured, and the data was analyzed using response surface methodology, which is a statistical analysis methods used to quantitatively derive the factors affecting oil film thickness and the extent of their contribution. We found that the factor with the strongest effect on minimum oil film thickness is oil pressure. Lastly, as a verification test, bearing wear on the main bearings was compared under various oil pressure conditions. Clear differences in bearing wear were identified.
Technical Paper

A Study of Technology for Assembling Vehicle Endurance Reliability

1991-09-01
911924
The ways in which vehicles are used in the field are continually becoming more diverse. In order to provide the optimum solution with respect to performance and weight, it is necessary to be able to assure vehicle endurance reliability with a high degree of accuracy in relation to the manner of use in each market. This situation has increased the importance of accurately quantifying the ways in which vehicles are used in the field and of designing vehicles with sufficient endurance reliability to match the usage requirements. This report presents a “market model” by which the manner of usage in the field can be treated quantitatively using combinations of environmental factors that influence the road load, drive load and corrosion load, representing typical loads vehicles must withstand.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Technical Paper

A Study of a Practical Numerical Analysis Method for Heat Flow Distribution in the Engine Compartment

1993-04-01
931081
The thermal environment in the automotive engine compartment is expected to become increasingly severe in the years ahead owing to the installation of a large-size manifold catalyst to reduce exhaust emissions, among other factors. This will make it even more important to analyze the engine compartment layout in terms of heat flow considerations at the design conceptualization stage of a new vehicle. In this research, a flow analysis program called DRAG4D was applied to find the flow velocity distribution and ambient air temperature distribution in the engine compartment during driving, idling and after the engine was turned off. This original program developed at Nissan takes into account the effects of the energy balance and buoyancy, and provides a practical level of prediction accuracy. The time required to create an analytical model and perform the computations has been shortened by using an automatic grid generation function, based on a solid model, and experimental equations.
Technical Paper

A Study of a Safety Support System that Uses Information from the Road Infrastructure

2004-03-08
2004-01-0448
A safety support system that uses information received from the road infrastructure is being developed in a project sponsored by the Ministry of Land, Infrastructure and Transport. The purpose of this system is to reduce the number of accidents at intersections and on highways. The system is now being tested in an experimental vehicle. This paper describes what kind of information is helpful to drivers based on the experimental results.
Journal Article

A Study of the Knocking Mechanism in Terms of Flame Propagation Behavior Based on 3D Numerical Simulations

2009-04-20
2009-01-0699
The aim of this study is to gain a better understanding of the mechanism of knocking with respect to flame propagation behavior based on 3D simulations conducted with the Universal Coherent Flamelet Model. Flame propagation behavior under the influence of in-cylinder flow was analyzed on the basis of the calculated results and experimental visualizations. Tumble and swirl flows were produced in the cylinder by inserting various baffle plates in the middle of the intake port. A comparison of the measured and calculated flame propagation behavior showed good agreement for various in-cylinder flow conditions. The results indicate that in-cylinder flow conditions vary the flame propagation shape from the initial combustion period and strongly influence the occurrence of knocking.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

A Study on Cam Wear Mechanism with a Newly Developed Friction Measurement Apparatus

1998-10-19
982663
The requirements for emission control, lower fuel consumption and higher engine output have changed the engine valve train system to 4-valve/cylinder and higher cam lift designs, and these changes make the cam/tappet lubrication conditions more severe than before. Under such a working condition, there is a high possibility that cam/tappet surface damages such as scuffing, pitting and wear may occur. Among the damages, the wear of cam/tappet is the most difficult to predict since the wear mechanism still remains unclear. To understand the lubrication condition and therefore, the wear mechanism at the cam/tappet contact, friction was measured with a newly developed apparatus. Measurement results showed that the lubrication condition between cam and tappet is predominantly in the mixed and boundary lubrication conditions.
Technical Paper

A Study on Combustion of High Pressure Fuel Injection for Direct Injection Diesel Engine

1988-02-01
880422
Characteristics of diesel combustion with high pressure fuel injection were investigated, using a supercharged and charge air cooled single cylinder engine. Observation and analysis of combustion was performed using high speed schlieren photography at a definite low level NOx emission, while varying the parameters of both injection pressure and swirl ratio. Engine performance at a high injection pressure was evaluated in combination with shallow dish type combustion chamber and 8 hole nozzle. Two different intake ports (higher and lower swirl ratio) were used for the evaluation. Conventional injection system in combination with toroidal cavity and 4 hole nozzle was compared as a base line. It is generally said that quiescent combustion system is suitable for higher injection pressure configuration. According to the observed result of combustion photographs, however, higher swirl ratio shows better mixing than a lower swirl ratio, which was also confirmed by the performance test.
X