Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Technical Paper

A Comparison of Gas Chromatography-Based Methods of Analyzing Hydrocarbon Species

1994-03-01
940740
Gas chromatographic methods for analyzing hydrocarbon species in vehicle exhaust emissions were compared in terms of their collection efficiency, detection limit, repeatability and number of species detected using cylinder gas and tailpipe emission samples. The main methods compared were a Tenax cold trap injection (TCT) method (C5-C12 HCs) and a cold trap injection (CTI) method (C2-C4 HCs; C5-C12 HCs). Our own direct (DIR) method was used to confirm the collection efficiencies. Both methods yielded good results, but the CTI method showed low collection efficiency for some C2-C4 HCs. Measurement of individual species is needed with this method for accurate analysis of tailpipe emissions. Both the CTI method and the TCT method combined with the DIR method for determining C2-C4 HCs yielded nearly the same ozone specific reactivity values for the NMHC species analyzed.
Technical Paper

A Model-Based Technique for Spark Timing Control in an SI Engine Using Polynomial Regression Analysis

2009-04-20
2009-01-0933
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation.
Technical Paper

A Motor-Drive System Design That Takes Into Account EV Characteristics

1999-03-01
1999-01-0739
This paper discusses various design factors that must be considered in achieving a practical motor-drive system for electric vehicles. When we design a motor-drive system for an electric vehicle, pursuit of high efficiency is required, and the system also has to have a good ease of use in practical situation. The following configuration is preferable for the realization of the vehicle that meets these requirements (1) A direct- coupled geartrain is used. (2) A permanent magnet synchronous motor is used as the traction motor. (3) The motor is inverter driven (battery operated) (4) A controller is needed to manage torque characteristics. When we design the motor-drive system using these configuration, we have to resolve various issues of the system concerning the vehicle and drive system performance fir practical use. By resolving these design issues, the practical performance of EVs can be improved and they can also make full use of the advantages of a motor-drive system.
Technical Paper

A New Approach to Finding Optimum Planetary Gear Trains for Automatic Transmissions

1993-03-01
930676
There has been a growing need to develop more compact automatic transmissions with a greater number of speeds for better fuel economy and better driveability. This study investigated a method for determining suitable planetary gear trains for today's transmissions. A computer program has been developed for application to five-speed transmissions consisting of two planetary gearsets. By analyzing various gear train possibilities, the program can identify which gearsets are suitable for different conditions, including the number of speeds, the number of binding elements, topological suitability and other factors.
Technical Paper

A New Diagnosis Method for an Air-Fuel Ratio Cylinder Imbalance

2012-04-16
2012-01-0718
A new diagnosis method for an air-fuel ratio cylinder imbalance has been developed. The developed diagnosis method is composed of two parts. The first part detects an occurrence of an air-fuel ratio cylinder imbalance by using a two revolution frequency component of an EGO sensor output signal or an UEGO sensor output signal upstream from a catalyst. The two revolution frequency component is from a cycle where an engine rotates twice. The second part of the diagnosis method detects an increase of emissions by using a low frequency component which is calculated from the output of an EGO sensor downstream from the catalyst. When the two revolution frequency component calculated using the upstream sensor output is larger than a certain level and the low frequency component calculated using the downstream sensor output is shifted to a leaner range, the diagnosis judges that the emissions increase is due to an air-fuel ratio cylinder imbalance.
Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

A New Nissan 3.0-liter V-6 Twin-cam Twin-turbo Engine with Dual Intake and Exhaust Systems

1990-02-01
900649
As a new generation sports car engine to lead the field in the 1990s, a 3.0 liter, 60°V, type 6 cylinder, 4 cam, 24 valve engine (VG30DETT) has been developed to achieve the utmost in high performance levels and reliability. it has been mounted on the new model 300ZX and announced in the North America and Japanese markets. The VG30DETT engine is based on the previous VG30DE engine (the engine mounted on the former model 300ZX designed for the market in Japan). The main components, the major driving and the lubrication systems including such parts as the crank shaft,con-rod, cylinder block, piston, exhaust manifold, and oil pan of the VG30DE were thoroughly reviewed and revised. The VG30DETT engine is the result of redesigning the structure of the engine itself and its parts and components to assure durability under, high-level performance requirements.
Technical Paper

A New Quasi-Dimensional Combustion Model Applicable to Direct Injection Gasoline Engine

2010-04-12
2010-01-0544
Gasoline engines employ various mechanisms for improvement of fuel consumption and reduction of exhaust emissions to deal with environmental problems. Direct fuel injection is one such technology. This paper presents a new quasi-dimensional combustion model applicable to direct injection gasoline engine. The Model consists of author's original in-cylinder turbulence and mixture homogeneity sub model suitable for direct fuel injection conditions. Model validation results exhibit good agreement with experimental and 3D CFD data at steady state and transient operating conditions.
Technical Paper

A Robotic Driver on Roller Dynamometer with Vehicle Performance Self Learning Algorithm

1991-02-01
910036
A robotic driver has been designed on the basis of an analysis of a human driver's action in following a given driving schedule. The self-learning algorithm enables the robot to learn the vehicle characteristics without human intervention. Based on learned relationships, the robotic driver can determine an appropriate accelerator position and execute other operations through sophisticated calculations using the future scheduled vehicle speed and vehicle characteristics data. Compensation is also provided to minimize vehicle speed error. The robotic driver can reproduce the same types of exhaust emission and fuel economy data obtained with human drivers with good repeatability. It doesn't require long preparation time. Thereby making it possible to reduce experimentation work in the vehicle development process while providing good accuracy and reliability.
Technical Paper

A Single-chip RISC Microcontroller Boarding on MY1998

1997-02-24
970863
This paper presents a single-chip 32bit RISC microcontroller boarding on MY1998 dedicated to highly complicated powertrain management. The high performance 32bit RISC CPU provides the only solution to meet requirements of drastic CPU performance enhancement and integration. Furthermore, a 32bit counter, based on a 20 MHz clock, and a 32bit multiplier make possible misfire detection and precise analysis of the engine management strategy, especially cylinder individual air-fuel ratio control.
Technical Paper

A State Adaptive Control Algorism for Vehicle Suspensions

1988-11-01
881769
This paper describes a state adaptive control method for vehicle suspensions proposed by Hitachi, Ltd. The objective of the control is to improve riding comfort and driving stability in reaction to road iregularities, exterior wind forces, and changes in vehicle loads as well as in reaction to inertial changes during cornering, breaking, and accelerating. The objective is attained by making considerable use of the relative displacement data between the body and the suspension. The state adaptive control system includes four shock absorbers whose damping forces can be tuned in three stages, four height sensors which measure the relative displacement, a vehicle speed sensor, and a microcomputer which decides the optimal damper stage. The validity of the proposed control method is shown through computer simulations and actual driving experiments. Vertical acceleration is reduced by about 55 % by switching from the soft damper to the hard damper in a computer simulation.
Journal Article

A Study of Combustion Technology for a High Compression Ratio Engine: The Influence of Combustion Chamber Wall Temperature on Knocking

2016-04-05
2016-01-0703
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio is an example of a technology for improving the thermal efficiency of gasoline engines. A significant issue of a high compression ratio engine for improving fuel economy and low-end torque is prevention of knocking under a low engine speed. Knocking is caused by autoignition of the air-fuel mixture in the cylinder and seems to be largely affected by heat transfer from the intake port and combustion chamber walls. In this study, the influence of heat transfer from the walls of each part was analyzed by the following three approaches using computational fluid dynamics (CFD) and experiments conducted with a multi-cooling engine system. First, the temperature rise of the air-fuel mixture by heat transfer from each part was analyzed.
Technical Paper

A Study of Drag Reduction Devices for Production Pick-up Trucks

2017-03-28
2017-01-1531
This paper describes a study of drag reduction devices for production pick-up trucks with a body-on-frame structure using full-scale wind tunnel testing and Computational Fluid Dynamics (CFD) simulations. First, the flow structure around a pick-up truck was investigated and studied, focusing in particular on the flow structure between the cabin and tailgate. It was found that the flow structure around the tailgate was closely related to aerodynamic drag. A low drag flow structure was found by flow analysis, and the separation angle at the roof end was identified as being important to achieve the flow structure. While proceeding with the development of a new production model, a technical issue of the flow structure involving sensitivity to the vehicle velocity was identified in connection with optimization of the roof end shape. (1)A tailgate spoiler was examined for solving this issue.
Technical Paper

A Study of Heat Rejection and Combustion Characteristics of a Low-temperature and Pre-mixed Combustion Concept Based on Measurement of Instantaneous Heat Flux in a Direct-Injection Diesel Engine

2000-10-16
2000-01-2792
There have been strong demands recently for reductions in the fuel consumption and exhaust emissions of diesel engines from the standpoints of conserving energy and curbing global warming. A great deal of research is being done on new emission control technologies using direct-injection (DI) diesel engines that provide high thermal efficiency. This work includes dramatic improvements in the combustion process. The authors have developed a new combustion concept called Modulated Kinetics (MK), which reduces smoke and NOx levels simultaneously by reconciling low-temperature combustion with pre-mixed combustion [1, 2]. At present, research is under way on the second generation of MK combustion with the aim of improving emission performance further and achieving higher thermal efficiency [3]. Reducing heat rejection in the combustion chamber is effective in improving the thermal efficiency of DI diesel engines as well as that of MK combustion.
Technical Paper

A Study of a DISI Engine with a Centrally Located High-pressure Fuel Injector

2004-10-25
2004-01-2944
Vehicle manufacturers developed two mixture formation concepts for the first generation of gasoline direct-injection (GDI) engines. Both the wall-guided concept with reverse tumble air motion or swirl air motion and the air-guided concept with tumble air motion have the fuel injector located at the side of the combustion chamber between the two intake ports. This paper proposes a new GDI concept. It has the fuel injector located at almost the center of the combustion chamber and with the spark plug positioned nearby. An oval bowl is provided in the piston crown. The fuel spray is injected at high fuel pressures of up to 100 MPa. The spray creates strong air motion in the combustion chamber and reaches the piston bowl. The wall of the piston bowl changes the direction of the spray and air motion, producing an upward flow. The spray and air flow rise and reach the spark plug.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
Journal Article

A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines

2015-04-14
2015-01-0883
Technologies for improving the fuel economy of gasoline engines have been vigorously developed in recent years for the purpose of reducing CO2 emissions. Increasing the compression ratio for improving thermal efficiency and downsizing the engine based on fuel-efficient operating conditions are good examples of technologies for enhancing gasoline engine fuel economy. A direct-injection system is adopted for most of these engines. Direct injection can prevent knocking by lowering the in-cylinder temperature through fuel evaporation in the cylinder. Therefore, direct injection is highly compatible with downsized engines that frequently operate under severe supercharging conditions for improving fuel economy as well as with high compression ratio engines for which susceptibility to knocking is a disadvantage.
Journal Article

A Study of the Knocking Mechanism in Terms of Flame Propagation Behavior Based on 3D Numerical Simulations

2009-04-20
2009-01-0699
The aim of this study is to gain a better understanding of the mechanism of knocking with respect to flame propagation behavior based on 3D simulations conducted with the Universal Coherent Flamelet Model. Flame propagation behavior under the influence of in-cylinder flow was analyzed on the basis of the calculated results and experimental visualizations. Tumble and swirl flows were produced in the cylinder by inserting various baffle plates in the middle of the intake port. A comparison of the measured and calculated flame propagation behavior showed good agreement for various in-cylinder flow conditions. The results indicate that in-cylinder flow conditions vary the flame propagation shape from the initial combustion period and strongly influence the occurrence of knocking.
Technical Paper

A Study of the Power Transfer Systems for HEVs

2006-04-03
2006-01-0668
A key factor influencing the performance of a hybrid electric vehicle (HEV) is how the engine and motor-generator (MG) are combined with the vehicle. There have been several types of combinations such as power transfer by using the mechanical transmission of conventional vehicles or the electrical transmission originally designed for HEVs. The objectives of this research were to clarify fuel economy characteristics according to the type of power transfer system used and to identify the requirements for MG system development by analyzing MG operation conditions in each power transfer mode. HEV systems for passenger car use were modeled on the basis of a functional classification. Simulations were conducted using the characteristics of the power transfer systems as parameters to evaluate fuel economy tendencies under several driving modes. The mechanism of the fuel economy tendencies was then analyzed to evaluate quantitatively the effect of each power transfer system on fuel economy.
X