Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Journal Article

A Demonstration of Local Heat Treatment for the Preform Annealing Process

2011-04-12
2011-01-0538
The preform annealing process is a two-stage stamping method for shaping non age-hardenable (i.e. 5000 series) aluminum sheet panels in which the panel is heat treated in between the two steps to improve overall formability of the material. The intermediate annealing heat treatment eliminates the cold work accumulated in the material during the first draw. The process enables the ability to form more complex parts than a conventional aluminum stamping process. A demonstration of local annealing for this process was conducted to form a one-piece aluminum liftgate inner panel for a large sport utility vehicle using the steel product geometry without design concessions. In prior work, this process was demonstrated by placing the entire panel in a convection oven for several minutes to completely anneal the cold work.
Technical Paper

A Dual Clutch Torque Converter for Dual Input Shaft Transmissions

2013-04-08
2013-01-0232
This paper presents an alternative launch device for layshaft dual clutch transmissions (DCT's). The launch device incorporates a hydrodynamic torque converter, a lockup clutch with controlled slip capability and two wet multi-plate clutches to engage the input shafts of the transmission. The device is intended to overcome the deficiencies associated with using conventional dry or wet launch clutches in DCT's, such as limited torque capacity at vehicle launch, clutch thermal capacity and cooling, launch shudder, lubricant quality and requirement for interval oil changes. The alternative device enhances drive quality and performance at vehicle launch and adds the capability of controlled capacity slip to attenuate gear rattle without early downshifting. Parasitic torque loss will increase but is shown not to drastically influence fuel consumption compared to a dry clutch system, however synchronizer engagement can become a concern at cold operating temperatures.
Technical Paper

A Fatigue Prediction Method for Spot Welded Joints

2013-04-08
2013-01-1208
Generally linear finite element analysis (FEA) is used to predict fatigue life of spot welded joints in a vehicle body structure. Therefore, the effect of plastic deformation at the vicinity of the spot welded joints is not included on fatigue prediction. This study introduces a simple technique to include the plastic deformation effect without performing elastic-plastic finite element analysis. The S-N curve obtained from fatigue test results is modified to consider this effect. Tensile strength test results of spot welded joint specimens were utilized to find the load range for FEA equivalent to the applied load range for fatigue tests. To demonstrate the proposed approach, fatigue test results of advanced high strength steels (AHSS) for lap-shear and coach peel specimens were used. Both the specimen types were tested at various constant amplitudes with the load ratios of R=0.1 and 0.3.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

A Multidisciplinary Numerical Modeling Tool Integrating CFD and Thermal System Simulation for Automotive HVAC System Design

2012-04-16
2012-01-0644
A multidisciplinary toolset integrating ANSYS FLUENT CFD solver and GM in-house thermal system design tool - e-Thermal has been developed to design automotive HVAC systems. This toolset utilizes COM software interface standard of MS Windows for inter-process communication at simulation run-time to synchronize the two applications and to exchange data. In this report, first, the implementation of this fully transient, coupled method between FLUENT CFD and e-Thermal is introduced. We then apply this integrated tool to simulate a transient A/C operating cycle including hot-soak and cool-down of a cabin. The coupled simulation consists of an A/C and an Air-Handling (HVAC module) system models, and a cabin CFD model. It demonstrates that the coupled method can simulate fully transient HVAC system operations in a vehicle.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

1997-05-01
971597
The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

A Study on Automatic Transmission System Optimization Using a HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0977
This Paper introduces a modular, flexible and user-friendly dynamic powertrain model of the US Army's High Mobility Multi-Wheeled Vehicle (HMMWV). It includes the DDC 6.5L diesel engine, Hydra-matic 4L80-E automatic transmission, Torsen differentials, transfer case, and flexible drive and axle shafts. This model is used in a case study on transmission optimization design to demonstrate an application of the model. This study shows how combined optimization of the transmission hardware (clutch capacity) and control strategy (shift time) can be explored, and how the models can help the designer understand dynamic interactions as well as provide useful design guidance early in the system design phase.
Technical Paper

A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics

1997-02-24
970353
The objective of this study was to investigate the effects of fuel viscosity and the effects of nozzle inlet configuration on the characteristics of high injection pressure sprays. Three different viscosity fuels were used to reveal the effects of viscosity on the spray characteristics. The effects of nozzle inlet configuration on spray characteristics were studied using two mini-sac six-hole nozzles with different inlet configurations. A common rail injection system was used to introduce the spray at 90 MPa injection pressure into a constant volume chamber pressurized with argon gas. The information on high pressure transient sprays was captured by a high speed movie camera synchronized with a pulsed copper vapor laser. The images were analyzed to obtain the spray characteristics which include spray tip penetration, spray cone angle at two different regions, and overall spray Sauter Mean Diameter (SMD).
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

Acceleration Sound Preference from a CVT Perspective

2014-11-04
2014-36-0798
The fuel economy benefits of Continuously Variable Transmission (CVT) technology have led to a steady growth in their adoption since the 1990's that is likely to continue despite the competition from Dual Clutch Transmission (DCT) & Automated Manual Transmission (AMT) technology. Even though CVTs provide a smoother driving experience due to their “shift-free” operation, general market feedback indicates some level of consumer dissatisfaction in the area of acceleration sound quality. This is particularly evident in the sub-compact and compact vehicle segments that feature small four cylinder engines with cost/weight limited sound packaging. The dissatisfaction with the acceleration sound quality is primarily linked to the non-linear relationship between engine RPM and vehicle speed that is inherent to CVTs and is often referred to as “rubber-band” feel.
Technical Paper

Advanced Combustion Performance for High Efficiency in New I3 1.2L Supercharged Gasoline Engine by Effective Use of 3D Engine Simulation

2012-04-16
2012-01-0422
A new 1.2L inline 3-cylinder supercharged gasoline engine was developed to improve fuel efficiency and to meet EURO 5 emission regulations. The engine was designed with a high compression ratio, heavy exhaust gas recirculation (EGR), and a long stroke to improve fuel efficiency. The Miller cycle and a direct fuel injection system were applied to this engine in order to mitigate the occurrence of knock due to the high compression ratio. In addition, a supercharging system was adopted to compensate for the decline in charging efficiency due to the Miller cycle. The design of a direct injection gasoline engine involves a lot of problems such as reduction of oil dilution, stabilization of combustion at first idle retarded, improvement of air-fuel mixing homogeneity, and strengthening of the gas flow. It is hard to resolve these problems independently due to their complexities and difficult nature. Reducing wall wetting by the fuel spray can improve oil dilution in a small engine.
Technical Paper

Advances in Accumulator Car Design

1997-08-06
972645
The use of a hydraulic drive system with accumulator energy storage has the potential of providing large gains in fuel economy of internal combustion engine passenger automobiles. The improvement occurs because of efficient regenerative braking and the practicality of decoupling the engine operation from the driving cycle demands. The concept under study uses an engine-driven pump supplying hydraulic power to individual wheel pump/motors (P/M's) and/or an accumulator. Available P/M's have high efficiencies (e.g., 95%) at the ideal point of operation, but the efficiency falls off considerably at combinations of pressure, speed, and displacement that are significantly away from ideal. In order to maximize the fuel economy of the automobile, it is necessary to provide the proper combination of components, system design, and control policies that operate the wheel P/M's as close as possible to their maximum efficiency under all types of driving and braking conditions.
Technical Paper

Air Entrainment in a High Pressure Diesel Spray

1997-05-01
971620
This paper presents some experimental results of air velocity measurements near high pressure diesel sprays. The measurements were made using a moderately high pressure (90 MPa) common rail injector in a pressurized spray chamber. The chamber was operated at ambient temperature (25°C) and was pressurized with Argon to produce a chamber gas density of about 27 kg/m3, similar to densities found in a large turbocharged diesel near TDC. The gas phase was tagged using water droplets doped with Stilbene 420, with an estimated droplet size of 18 μm. The atomized water-Stilbene droplets were illuminated with the third harmonic of a pair of Nd:YAG lasers which caused the Stilbene to fluoresce at about 420 nm. To reduce the competing fluorescence from the injected fuel, the injector was fueled with Jet-A fuel. Using the two lasers, double exposures of the small droplets were recorded on film. The laser pulse lengths were about 6 ns, and typical times between pulses were 100 μs.
Technical Paper

Air Flow Characteristics Surrounding Evaporating Transient Diesel Sprays

2002-03-04
2002-01-0499
Airflow characteristics surrounding evaporating transient diesel sprays inside a constant volume chamber under temperatures around 1100 K were investigated using a 6-hole injector and a single-hole injector. Particle Image Velocimetry (PIV) was used to measure the gas velocities surrounding a spray plume as a function of space and time. A conical control surface surrounding the spray plume was chosen as a representative side entrainment surface. The normal velocities crossing the control surface toward the spray plume for single-hole injection sprays were higher than those of 6-hole injection sprays. The velocities tangential to the control surface toward the injector tip for the single-hole injection sprays were lower than those of 6-hole injection sprays. An abrupt increase in tangential velocities near the chamber wall suggests that the recirculation of surrounding gas was accelerated by the spray wall impingement, both for non-evaporating and evaporating sprays.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

An Engineering Approach to Predict Fracture and Tearing

2011-04-12
2011-01-0002
An engineering approach was developed to extract the failure plastic strain, thinning failure strain, and major in plane failure strain for finite element simulation applications. This approach takes into account the failure strain dependency on the element size when element deletion scheme is invoked in the simulation of material fracture. Both localized necking fracture and tensile shear fracture can be predicted when appropriate elements and material models are used in LS-DYNA simulations. This leads to a more accurate prediction of fracture and tearing in the finite element simulation of vehicle structure and crash loading conditions.
X