Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Diesel Spray Simulations Using a New Detailed Chemistry Turbulent Combustion Model

2000-06-19
2000-01-1891
Until recently, the application of the detailed chemistry approach as a predictive tool for engine modeling has been sort of a “taboo” for different reasons, mainly because of an exaggerated rigor to the chemistry/turbulence interaction modeling. In terms of this ideology, if the interaction cannot be simulated properly, the detailed chemistry approach makes no sense. The novelty of the proposed methodology is the coupling of a generalized partially stirred reactor, PaSR, model with the high efficiency numerics to treat detailed oxidation kinetics of hydrocarbon fuels. In terms of this approach, chemical processes are assumed to proceed in two successive steps: the reaction follows after the micro-mixing is completed on a sub-grid scale.
Technical Paper

3-D Modeling of Conventional and HCCI Combustion Diesel Engines

2004-10-25
2004-01-2964
An investigation of the possibility to extend the 3-dimensional modeling capabilities from conventional diesel to the HCCI combustion mode simulation was carried out. Experimental data was taken from a single cylinder engine operating with early injections for the HCCI and a split-injection (early pilot+main) for the high speed Diesel engine operation. To properly phase the HCCI mode in the experiments, high amounts of cooled EGR and a decreased compression ratio were used. In numerical simulation performed using KIVA3-V code, modified to incorporate the Detailed Chemistry Approach the same conditions were reproduced. Special attention is paid on the analysis of the events leading up to the auto-ignition, which was reasonably well predicted.
Technical Paper

48V Mild-Hybrid Architecture Types, Fuels and Power Levels Needed to Achieve 75g CO2/km

2019-04-02
2019-01-0366
48V mild hybrid powertrains are promising technologies for cost-effective compliance with future CO2 emissions standards. Current 48V powertrains with integrated belt starter generators (P0) with downsized engines achieve CO2 emissions of 95 g/km in the NEDC. However, to reach 75 g/km, it may be necessary to combine new 48V powertrain architectures with alternative fuels. Therefore, this paper compares CO2 emissions from different 48V powertrain architectures (P0, P1, P2, P3) with different electric power levels under various driving cycles (NEDC, WLTC, and RTS95). A numerical model of a compact class passenger car with a 48V powertrain was created and experimental fuel consumption maps for engines running on different fuels (gasoline, Diesel, E85, CNG) were used to simulate its CO2 emissions. The simulation results were analysed to determine why specific powertrain combinations were more efficient under certain driving conditions.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Technical Paper

A Combined Model for High Speed Valve Train Dynamics (Partly Linear and Partly Nonlinear)

1990-09-01
901726
A numerical modeling technique is proposed for computer simulations of high speed valve train dynamics. The dynamic terms in the valve spring reaction forces are calculated using linear vibration theory for given kinematic valve motions. Because the spring dynamics are analyzed before the time stepping integration, spring surge phenomena can be included without using additional computer time. Consequently, valve train dynamics can be simulated very quickly without noticeable errors in accuracy. The experimental results prove the computer model developed here is accurate and also computationally efficient.
Technical Paper

A Comparative Study of Hydraulic Hybrid Systems for Class 6 Trucks

2013-04-08
2013-01-1472
In order to reduce fuel consumption, companies have been looking at hybridizing vehicles. So far, two main hybridization options have been considered: electric and hydraulic hybrids. Because of light duty vehicle operating conditions and the high energy density of batteries, electric hybrids are being widely used for cars. However, companies are still evaluating both hybridization options for medium and heavy duty vehicles. Trucks generally demand very large regenerative power and frequent stop-and-go. In that situation, hydraulic systems could offer an advantage over electric drive systems because the hydraulic motor and accumulator can handle high power with small volume capacity. This study compares the fuel displacement of class 6 trucks using a hydraulic system compared to conventional and hybrid electric vehicles. The paper will describe the component technology and sizes of each powertrain as well as their overall vehicle level control strategies.
Technical Paper

A Comparative Study on Knock Occurrence for Different Fuel Octane Number

2018-09-10
2018-01-1674
Combustion with knock is an abnormal phenomenon which constrains the engine performance, thermal efficiency and longevity. The advance timing of the ignition system requires it to be updated with respect to fuel octane number variation. The production series engines are calibrated by the manufacturer to run with a special fuel octane number. In the experiment, the engine was operated at different speeds, loads, spark advance timings and consumed commercial gasoline with research octane numbers (RON) 95, 97 and 100. A 1-dimensional validated engine combustion model was run in the GT-Power software to simulate the engine conditions required to define the knock envelope at the same engine operation conditions as experiment. The knock intensity investigation due to spark advance sweep shows that combustion with noise was started after a specific advance ignition timing and the audible knock occur by increasing the advance timing.
Technical Paper

A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering Both Engine Properties and Global Warming Potentials

2016-10-17
2016-01-2254
Heavy alcohols can be mixed with fossil diesel to produce blended fuels that can be used in diesel engines. Alcohols can be obtained from fossil resources, but can also be produced more sustainably from renewable raw materials. The use of such biofuels can help to reduce greenhouse gas (GHG) emissions from the transport sector. This study examines four alcohol/diesel blends each containing one heavy alcohol: n-butanol, iso-butanol, 2-ethyl hexanol and n-octanol. All of the blends where prepared to function as drop-in fuels in existing engines with factory settings. To compensate for the alcohols′ low cetane numbers (CN), a third component with high CN was added to each blend, namely hydrotreated vegetable oil (HVO). The composition of each mixture was selected to give an overall CN equal to that of fossil diesel fuel.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Computational Investigation of Ground Simulation for a Saloon Car

2014-04-01
2014-01-0615
Automotive aerodynamics measurements and simulations now routinely use a moving ground and rotating wheels (MVG&RW), which is more representative of on-road conditions than the fixed ground-fixed wheel (FG&FW) alternative. This can be understood as a combination of three elements: (a) moving ground (MVG), (b) rotating front wheels (RWF) and (c) rotating rear wheels (RWR). The interaction of these elements with the flow field has been explored to date by mainly experimental means. This paper presents a mainly computational (CFD) investigation of the effect of RWF and RWR, in combination with MVG, on the flow field around a saloon vehicle. The influence of MVG&RW is presented both in terms of a combined change from a FG&FW baseline and the incremental effects seen by the addition of each element separately. For this vehicle, noticeable decrease in both drag and rear lift is shown when adding MVG&RW, whereas front lift shows little change.
Technical Paper

A Control-Oriented Spatially Resolved Thermal Model of the Three-Way-Catalyst

2021-04-06
2021-01-0597
The three-way-catalyst (TWC) is an essential part of the exhaust aftertreatment system in spark-ignited powertrains, converting nearly all toxic emissions to harmless gasses. The TWC’s conversion efficiency is significantly temperature-dependent, and cold-starts can be the dominating source of emissions for vehicles with frequent start/stops (e.g. hybrid vehicles). In this paper we develop a thermal TWC model and calibrate it with experimental data. Due to the few number of state variables the model is well suited for fast offline simulation as well as subsequent on-line control, for instance using non-linear state-feedback or explicit MPC. Using the model could allow an on-line controller to more optimally adjust the engine ignition timing, the power in an electric catalyst pre-heater, and/or the power split ratio in a hybrid vehicle when the catalyst is not completely hot.
Technical Paper

A Correction Method for Stationary Fan CFD MRF Models

2009-04-20
2009-01-0178
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In this paper we have examined the possibilities of correcting this deficiency with a simple “speed correction”. This is done by testing and simulating a production fan in the Volvo Fan Test Rig for two operating speeds, 1200 rpm and 2400 rpm. Pressure rise, fan power and static efficiency are presented as functions of volumetric flow rate. The simulations verify that using the MRF model the common behavior of under predicting pressure rise and performance of the fan occur. In addition, this work shows that; although the MRF is not predicting fan performance correctly it constitutes a reliable fan modeling strategy.
Technical Paper

A Diesel Engine Model, including Compression Brake for, Powertrain Control

2002-11-18
2002-01-3125
A diesel engine model, designed for studying events during automated gear shifting in a heavy duty truck is presented. It will be used for developing and evaluating powertrain control strategies. The deceleration in engine speed to the new synchronous speed, during an upshift, is of special intereset. The straightforward approach is to cut fuel and wait for the engine to slow down due to friction and pumping losses. In many cases, this approach is too slow, and the engine compression brake needs to be activated. The engine model, assuming quasi-steady, bidirectional thermodynamic flow with constant specific heat capacities, is implemented using Modelica. A simple model of the hydraulic circuit that governs the activation of the compression brake mode is incorporated in the model. Problems related to the simulation of the engine brake systems are discussed. They are handled by empirical correction factors. Measurements from rapid engine speed decelerations are used for verification.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Technical Paper

A Least-Cost Method for Prioritizing Battery Research

1983-02-01
830221
A methodology has been developed for identifying the combination of battery characteristics which lead to least-cost electric vehicles. Battery interrelationships include specific power vs, specific energy, peak power vs. specific energy and DOD, cycle life vs. DOD, cost vs. specific energy and peak power, and volumetric and battery size effects. The method is illustrated for the “second car” mission assuming lead/acid batteries. Reductions in life-cycle costs associated with future battery research breakthroughs are estimated using a sensitivity technique. A research prioritization system is described.
Technical Paper

A Method to Evaluate the Compression Ratio in IC Engines with Porous Thermal Barrier Coatings

2018-09-10
2018-01-1778
The compression ratio is an important engine design parameter. It determines to a large extend engine properties like the achievable efficiency, the heat losses from the combustion chamber and the exhaust losses. The same properties are affected by insulation of the combustion chamber. It is therefore especially important to know the compression ratio when doing experiments with thermal barrier coatings (TBC). In case of porous TBCs, the standard methods to measure the compression ratio can give wrong results. When measuring the compression ratio by volume, using a liquid, it is uncertain if the liquid fills the total porous volume of the coating. And for a thermodynamic compression ratio estimation, a model for the heat losses is needed, which is not available when doing experiments with insulation. The subject of this paper is the evaluation of an alternative method to assess the compression ratio.
Technical Paper

A Model of Turbocharged Engines as Dynamic Drivetrain Members

1993-11-01
933050
An engine model for use in computer simulation of transient behavior in drivetrain and vehicle systems is presented. Two elements, important for deviation (e.g. turbo-lag) from steady state characteristics, are the inertia of the supercharging unit (turbo shaft) and the fuel injection control system. No extensive combustion calculations are carried out within the model. Instead it uses condensed results from existing combustion models and measurements. The model is semi-empirical. Some of the engine specific properties needed for simulation are (e.g. for a turbocharged diesel): engine data in steady state operation, mappings of compressor and turbine performance, inertia of the engine components condensed to the crankshaft, turbo shaft inertia, displacement, compression ratio and the essentials of the fuel injection control strategy. Input parameters to the computer program based on the model are accelerator pedal position and external torque acting on the flywheel.
X