Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

2012-12-31
2012-01-2325
The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Technical Paper

A Life-Cycle-Based Environmental Evaluation: Materials in New Generation Vehicles

2000-03-06
2000-01-0595
This project team conducted a life-cycle-based environmental evaluation of new, lightweight materials (e.g., titanium, magnesium) used in two concept 3XVs -- i.e., automobiles that are three times more fuel efficient than today's automobiles -- that are being designed and developed in support of the Partnership for a New Generation of Vehicles (PNGV) program. The two concept vehicles studied were the DaimlerChrysler ESX2 and the Ford P2000. Data for this research were drawn from a wide range of sources, including: the two automobile manufacturers; automobile industry reports; government and proprietary databases; past life-cycle assessments; interviews with industry experts; and models.
Technical Paper

Assessing Grid Impact of Battery Electric Vehicle Charging Demand Using GPS-Based Longitudinal Travel Survey Data

2014-04-01
2014-01-0343
This paper utilizes GPS tracked multiday travel activities to estimate the temporal distribution of electricity loads and assess battery electric vehicle (BEV) grid impacts at a significant market penetration level. The BEV load and non-PEV load vary by time of the day and day of the week. We consider two charging preferences: home priority assumes BEV drivers prefer charging at home and would not charge at public charging stations unless the state of charge (SOC) of the battery is not sufficient to cover the way back to home; and charging priority does not require drivers to defer charging to home and assumes drivers will utilize the first available charging opportunity. Both home and charging priority scenarios show an evening peak demand. Charging priority scenario also shows a morning peak on weekdays, possibly due to workplace charging.
Technical Paper

Auto Stop-Start Fuel Consumption Benefits

2023-04-11
2023-01-0346
With increasingly stringent regulations mandating the improvement of vehicle fuel economy, automotive manufacturers face growing pressure to develop and implement technologies that improve overall system efficiency. One such technology is an automatic (auto) stop-start feature. Auto stop-start reduces idle time and reduces fuel use by temporarily shutting the engine off when the vehicle comes to a stop and automatically re-starting it when the brake is released, or the accelerator is pressed. As mandated by the U.S. Congress, the U.S. Environmental Protection Agency (EPA) is required to keep the public informed about fuel saving practices. This is done, in partnership with the U.S. Department of Energy (DOE), through the fueleconomy.gov website. The “Fuel-Saving Technologies” and “Gas Mileage Tips” sections of the website are focused on helping the public make informed purchasing decisions and encouraging fuel-saving driving habits.
Technical Paper

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding

2012-04-16
2012-01-0472
Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in boarder applications of Mg in automotive body construction. However, due to the large difference of melting temperatures of Mg and steel, fusion welding between two metals is very challenging. Ultrasonic spot welding (USW) has been demonstrated to join Mg to steel without melting and to achieve strong joints. However, galvanic corrosion between Mg and steel is inevitable but not well quantified. In this study, corrosion test of ultrasonic spot welds between 1.6-mm-thick Mg AZ31B-H24 and 0.8-mm-thick galvanized mild steel was conducted. No specific corrosion protection was applied in order to study the worst corrosion behavior. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the salt bath, air drying, then a constant humidity environment. Lap shear strength of the joints decreased linearly with the cycles.
Journal Article

Corrosion Behavior of Mixed-Metal Joint of Magnesium to Mild Steel by Ultrasonic Spot Welding with and without Adhesives

2013-04-08
2013-01-1017
Development of reliable magnesium (Mg) to steel joining methods is one of the critical issues in broader applications of Mg in automotive body construction. Ultrasonic spot welding (USW) has been demonstrated successfully to join Mg to steel and to achieve strong joints. In this study, corrosion test of ultrasonic spot welds between 1.6 mm thick Mg AZ31B-H24 and 0.8 mm thick galvanized mild steel, without and with adhesive, was conducted. Adhesive used was a one-component, heat-cured epoxy material, and was applied between overlapped sheets before USW. Corrosion test was conducted with an automotive cyclic corrosion test, which includes cyclic exposures of dipping in the 0.5% sodium chloride (NaCl) bath, a constant humidity environment, and a drying period. Lap shear strength of the joints decreased with the cycles of corrosion exposure. Good joint strengths were retained at the end of 30-cycle test.
Technical Paper

Effects of Friction Stir Processing on Mechanical Properties of the Cast Aluminum Alloy A356

2005-04-11
2005-01-1249
Surfaces of A356 castings were treated by friction stir processing to reduce porosity and to create more uniform distributions of second-phase particles. Dendritic microstructures were eliminated in stir zones. The ultimate tensile strength, ductility, and fatigue life of the cast A356 was increased by friction stir processing. Tensile specimens of cast and friction stir processed metal were also given a T7 heat treatment. Higher tensile strengths and ductilities were also measured for these friction stir processed specimens.
Technical Paper

Effects of Silicon and Boron Additions on the Susceptibility to Quench Embrittlement and the Bending Fatigue Performance of Vacuum Carburized Modified 4320 Steel

2007-04-16
2007-01-1005
The effect of B and Si additions on fracture and fatigue performance of vacuum carburized 4320 steel and modifications of 4320 steel containing additions of Si (1.0 and 2.0 wt pct) and B (0 and 17 ppm) was evaluated by bending fatigue testing. Three rates of gas quenching, in 10 bar nitrogen and 15 and 20 bar helium, were used to cool specimens after carburizing. The B, protected by Ti additions, together with the Si additions, increased core hardenability. The B/Si modified steels showed no improvement in fatigue resistance, as measured by endurance limits established by 10 million cycle runouts without fracture. However, scanning electron microscopy showed that Si reduced sensitivity to intergranular fracture or quench embrittlement, a major cause of bending fatigue crack initiation, and contributed to variable fatigue performance, with both low-cycle failures and runout performance at applied stresses significantly above measured endurance limits.
Technical Paper

Enhanced Safety of Heavy-Duty Vehicles on Highways through Automatic Speed Enforcement – A Simulation Study

2024-04-09
2024-01-1964
Highway safety remains a significant concern, especially in mixed traffic scenarios involving heavy-duty vehicles (HDV) and smaller passenger cars. The vulnerability of HDVs following closely behind smaller cars is evident in incidents involving the lead vehicle, potentially leading to catastrophic rear-end collisions. This paper explores how automatic speed enforcement systems, using speed cameras, can mitigate risks for HDVs in such critical situations. While historical crash data consistently demonstrates the reduction of accidents near speed cameras, this paper goes beyond the conventional notion of crash occurrence reduction. Instead, it investigates the profound impact of driver behavior changes within desired travel speed distribution, especially around speed cameras, and their contribution to the safety of trailing vehicles, with a specific focus on heavy-duty trucks in accident-prone scenarios.
Journal Article

Exploring the Impact of Speed Synchronization through Connected Vehicle Technology on Fleet-Level Fuel Economy

2013-04-08
2013-01-0617
It is rare for an attempt towards optimization at the fleet-level when consideration is given to the sheer number of seemingly unpredictable interactions among vehicles and infrastructure in congested urban areas. To close the gap, we introduce a simulation based framework to explore the impact of speed synchronization on fuel economy improvement for fleets in traffic. The framework consists of traffic and vehicle modules. The traffic module is used to simulate driver behavior in urban traffic; and the vehicle module is employed to estimate fuel economy. Driving schedule is the linkage between these two modules. To explore the impact, a connected vehicle technology sharing vehicle speed information is used for better fuel economy of a fleet including six vehicles. In all scenarios analyzed, the leading vehicle operates under the EPA Urban Dynamometer Driving Schedule (UDDS), while the other five vehicles follow the leader consecutively.
Journal Article

Failure Mode and Fatigue Behavior of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels

2013-04-08
2013-01-1023
Failure mode and fatigue behavior of friction stir spot welds made with convex and concave tools in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated based on experiments and a kinked fatigue crack growth model. Lap-shear specimens with the welds were tested under both quasistatic and cyclic loading conditions. Optical micrographs indicate that under both quasi-static and cyclic loading conditions, the welds mainly fail from cracks growing through the upper DP780GA sheets where the tools were plunged in during the welding processes. Based on the observed failure mode, a kinked fatigue crack growth model is adopted to estimate fatigue lives of the welds. In the kinked crack fatigue crack growth model, the stress intensity factor solutions for fatigue life estimations are based on the closed-form solutions for idealized spot welds in lap-shear specimens.
Journal Article

Failure Mode and Fatigue Behavior of Ultrasonic Spot Welds with Adhesive in Lap-Shear Specimens of Magnesium and Steel Sheets

2013-04-08
2013-01-1020
Failure modes and fatigue behaviors of ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets with and without adhesive are investigated. Ultrasonic spot welded, adhesive-bonded, and weld-bonded lap-shear specimens were made. These lap-shear specimens were tested under quasi-static and cyclic loading conditions. The ultrasonic spot weld appears not to provide extra strength to the weld-bonded lap-shear specimen under quasi-static and cyclic loading conditions. The quasi-static and fatigue strengths of adhesive-bonded and weld-bonded lap-shear specimens appear to be the same. For the ultrasonic spot welded lap-shear specimens, the optical micrographs indicate that failure mode changes from the partial nugget pullout mode under quasi-static and low-cycle loading conditions to the kinked crack growth mode under high-cycle loading conditions.
Journal Article

Failure Modes of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels under Quasi-Static and Cyclic Loading Conditions

2012-04-16
2012-01-0479
Failure modes of friction stir spot welds in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated under quasi-static and cyclic loading conditions based on experimental observations. Optical micrographs of dissimilar DP780GA/HSBS friction stir spot welds made by a concave tool before and after failure are examined. The micrographs indicate that the failure modes of the welds under quasi-static and cyclic loading conditions are quite similar. The micrographs show that the DP780GA/HSBS welds mainly fail from cracks growing through the upper DP780GA sheets where the concave tool was plunged into during the welding process. Based on the observed failure modes, a kinked fatigue crack growth model is adopted to estimate fatigue lives.
Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

2011-04-12
2011-01-0475
Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
Technical Paper

Heterogeneous Machine Learning on High Performance Computing for End to End Driving of Autonomous Vehicles

2020-04-14
2020-01-0739
Current artificial intelligence techniques for end to end driving of autonomous vehicles typically rely on a single form of learning or training processes along with a corresponding dataset or simulation environment. Relatively speaking, success has been shown for a variety of learning modalities in which it can be shown that the machine can successfully “drive” a vehicle. However, the realm of real-world driving extends significantly beyond the realm of limited test environments for machine training. This creates an enormous gap in capability between these two realms. With their superior neural network structures and learning capabilities, humans can be easily trained within a short period of time to proceed from limited test environments to real world driving.
Technical Paper

Modeling the Impact of Road Grade and Curvature on Truck Driving for Vehicle Simulation

2014-04-01
2014-01-0879
Driver is a key component in vehicle simulation. An ideal driver model simulates driving patterns a human driver may perform to negotiate road profiles. There are simulation packages having the capability to simulate driver behavior. However, it is rarely documented how they work with road profiles. This paper proposes a new truck driver model for vehicle simulation to imitate actual driving behavior in negotiating road grade and curvature. The proposed model is developed based upon Gipps' car-following model. Road grade and curvature were not considered in the original Gipps' model although it is based directly on driver behavior and expectancy for vehicles in a stream of traffic. New parameters are introduced to capture drivers' choice of desired speeds that they intend to use in order to negotiating road grade and curvature simultaneously. With the new parameters, the proposed model can emulate behaviors like uphill preparation for different truck drivers.
Journal Article

Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

2012-04-16
2012-01-0817
To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle.
Journal Article

Predicting Individual Fuel Economy

2011-04-12
2011-01-0618
To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG.
Technical Paper

The Prediction of Fatigue Sensitivity to Void Content for 3D Reinforced Composites

2006-04-03
2006-01-1336
Three dimensional fabrics have seen increasing use lately as composite reinforcements. Advantages over prepreg or chopped fiber processes can include cost, handling, consistent quality, impact behavior, and resistance to delamination [1]. To gain acceptance in the transportation industry it is imperative that properties including dynamic and fatigue behavior be designable. A Progressive Failure Analysis (PFA) was developed jointly by Alpha Star Corp and NASA to predict fatigue life of composites and determine their damage mechanisms so that the life could be extended. The title of this software package is GENOA™, and it was used to focus on the three dimensional fabric called 3WEAVE™ made by 3TEX, Inc. It was discovered through fatigue testing that void content greatly affected fatigue life for the 3D E-glass fabric reinforcing a polyurethane modified vinyl ester resin called Dion 9800 from Reichhold. This is a common characteristic for most structural materials.
Technical Paper

Ultrasonic Spot Welding of Galvanized Mild Steel to Magnesium AZ31B

2012-04-16
2012-01-0474
Ultrasonic spot welding (USW) is a promising joining method for magnesium to steel to overcome the difficulties of fusion welding for these two materials with significant differences in melting temperatures. In a previous paper, the results of ultrasonic spot welding of magnesium to steel, with sonotrode engaged Mg piece, was presented. In this study, same material combination (0.8-mm-thick galvanized mild steel and 1.6-mm Mg AZ31B-H24) was used, but with sonotrode engaging steel piece. Various welding time, from 0.4 to 2.0 sec, were applied. Tensile lap-shear test, optical metallography, and scanning electron micrography were conducted for joint strength measurement and microstructural evaluation. The joint strength reached over 4.2 kN at 1.8 sec welding time. Mg-Zn eutectic was formed at the interface, indicating the interfacial temperature over 344°C. The study demonstrated USW to be a viable process for potential manufacturing of mixed-metal joints.
X